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Abstract

The current air traffic environment in airport terminal areas experiences substantial delays when

weather conditions deteriorate to Instrument Meteorological Conditions (IMC). Expected future

increases in air traffic will put additional pressures on the National Airspace System (NAS) and will

further compound the high costs associated with airport delays. To address this problem, NASA has

embarked on a program to address Terminal Area Productivity (TAP). The goals of the TAP program

are to provide increased efficiencies in air traffic during approach, landing, and surface operations in

low-visibility conditions. The ultimate goal is to achieve efficiencies of terminal area flight

operations commensurate with Visual Meteorological Conditions (VMC) at current or improved

levels of safety.

During the last year, research activity culminated in the development, flight test and demonstration of

a prototype Low-Visibility Landing and Surface Operations (LVLASO) system. A NASA led

industry team and the FAA developed the LVLASO flight test system, integrating airport surface
surveillance, aeronautical data link, DGPS navigation, automation systems, and controller and flight

deck displays and interfaces. The LVLASO system supports both controllers and flight crews with

guidance, control and situational awareness information to achieve improved efficiencies and safety
of surface operations in IMC weather conditions. The LVLASO system was tested and demonstrated

to a wide range of aviation industry members at the Atlanta Hartsfield International Airport during

August, 1997.

This report describes the demonstration system and documents the activities pertaining to the

development of the LVLASO demonstration system as part of the ATOPS Task 16 contract. In
addition to the development and support of the LVLASO demonstration system this task also

examined future TAP data link and to a lesser extent the avionics equipment and integrity

requirements that must be considered for future LVLASO deployment.
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1.0 Introduction

With the advent of global, satellite-based navigation and data link communications technology, the

aviation industry is now able to address air space solutions that provide for more efficient and safe air

travel. Two such areas are the Future Air Navigation System / Air Traffic Management

(FANS/ATM) system and airport terminal area capacity improvement initiatives. At present, much of

the industry's focus is on the development of the Communications, Navigation and Surveillance

(CNS) / ATM system with primary focus on enroute operations since immediate cost benefits are

expected. One of the end goals of CNS/ATM is free flight, supported by seamless aeronautical data

link communications, automatic dependent surveillance, and air traffic management by Air Traffic

Control (ATC).

NASA Langley and NASA Ames Research Centers are also working to improve airport capacities via

the Terminal Area Productivity Program (TAP). NASA's TAP Program is intended to support the

industry with the development of appropriate technologies and system solutions, and also to involve

industry in achieving improved efficiency and safety of terminal area operations, particularly during

low-visibility weather conditions.

This report is in support of NASA's TAP program, addressing Low Visibility Landing and Surface

Operations (LVLASO). Specifically, this report documents the activity related to NASA's Industry

Demonstration and Flight Tests of LVLASO Technologies this past August at the Atlanta Hartsfield

International Airport.

TAP Overview

The goal of NASA's TAP program is to achieve clear-weather capacities in terminal area operations

in instrument weather conditions. Objectives are to develop and demonstrate integrated systems

technologies and procedures that enable productivity of the airport terminal area to match that of
visual conditions.

The four major components of TAP are 1) Low-Visibility Landing and Surface Operations

(LVLASO), 2) Reduced Separation Operations (RSO), 3) Air Traffic Management, and

4) Aircraft and ATC Systems Integration.

LVLASO objectives are to develop and demonstrate an aircraft navigation, guidance and control

system for surface operations to achieve or exceed safety and efficiency of visual operations under

non-visual operations down to Cat III B conditions, while being compatible with evolving surface

movement ground control automation. To accomplish these objectives, NASA has developed the

Taxiway Navigation and Situational Awareness (T-NASA) system, which provides the flight crew

with guidance and situational awareness information using integrated cockpit displays. In addition to

T-NASA, LVLASO also includes the development of a dynamic runway occupancy measurement

(DROM) system to determine the proper spacing of aircraft pairs during landing. LVLASO also

addresses a high-speed Roll-Out Turn-Off (ROTO) system which assists the crew to achieve or

improve upon visual condition runway occupancy under non-visual conditions.

RSO objectives are 1) to develop an Advanced (Wake)Vortex Spacing System (AVOSS) to be coupled

with appropriate ATC automation aids, allowing dynamic separation standards for aircraft pairs; 2) to

develop a capacity enhancing concept for integrating current flight management system (FMS)

capabilities with emerging ATC automation aids, and 3) to develop and demonstrate a flight-deck based

monitoring / surveillance system of aircraft on simultaneous, independent parallel approaches, allowing a

reduction in parallel runway spacings to less than 3,400 ft during non-visual conditions.
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Objectives of TAP Air Traffic Management are to develop and demonstrate enhanced Center
TRACON Automation System (CTAS) automation aids to more fully utilize FMS and data link

capabilities for increased airport capacities, utilize CTAS enhancements to incorporate dynamic

separation standards and enable closely-spaced runway operations, and to allow for rapid

reconfiguration of operational runways and airspace for te_xninal area operations.

Aircraft-ATC system integration objectives are to develop systems modeling / studies as tools to

support TAP objectives and to provide guidelines for ongoing research and development, to improve

understanding of root causes of inefficiencies in operations, project cost benefits for proposed

concepts, develop procedures and technical solutions for safe and effective integration of flight deck

and ATC operations, and to provide integrated flight test capability to demonstrate TAP products.

Flight tests and demonstration are planned in each area of "rAP, with eventual integration of all TAP

components into an overall demonstration of Terminal Area Productivity. The flight test and

demonstration of the LVLASO system at Atlanta earlier this year was a major milestone for NASA in

its TAP / LVLASO program goals.

Organization of Report

The primary activity of this task contract was to provide technical and equipment support for NASA's

flight tests and subsequent industry demonstration of Low-Visibility Landing Approach and Surface

Operations (LVLASO) technologies at Atlanta's Hartsfield International Airport. Subsequently the

major portion of this report focuses on the development of the LVLASO demonstration system and

available flight test results. Section 2 provides a top-level description of the LVLASO system that
was demonstrated. Section 2 also examines each of the individual LVLASO sub-systems that were

supported as part of the larger industry team in more detail, including description of interfaces,

protocols and test results. In addition to avionics support to NASA's LVLASO demonstration,

additional study activities were as follows:

1) Develop data link requirements for NASA's Terminal &tea Productivity (TAP) program, i.e., data

link requirements for terminal area operations in the frture CNS/ATM airspace system.

2) Examine aircraft integration and avionics integrity issues related to providing Integrated Surface

Operations capabilities to new and retrofit aircraft.

Section 3 discusses TAP data link and Section 4 addresses aircraft avionics equipment, integration

and integrity issues related to LVLASO.
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2.0 LVLASO Flight Test / Demonstration System Description

This section provides a description of the LVLASO system that was tested and demonstrated atthe

Atlanta Harts field International Airport during August, 1997. The Atlanta LVLASO test system

represents a significant integration of several complex sub-systems by NASA, FAA and a number of

industry partners. The majority of these sub-systems are expected to play an important role in the

future CNS/ATM airspace system that will be used to provide benefits for both, free flight and also

airport surface operations.

Before discussing the Atlanta LVLASO system that was implemented, it is useful to briefly review

the expected components of an end-state Integrated Surface Operations system (such as the Airport

Surface Movement Guidance and Control System {ASMGCS} concept being developed by RTCA

SC-159). This allows a comparison of the generic end-state system with the one that was tested and

demonstrated at Atlanta.

2.1 System Overview of Integrated Surface Operations

An Integrated Surface Operations / ASMGCS system has a diverse set of requirements that it must

address and requires a wide range of technologies and system interactions to achieve high-traffic

density operations during low-visibility conditions. This system must be capable of providing precise

guidance and control for a range of aircraft and vehicle types throughout the airport movement and

ramp areas in all types of weather conditions. The system must provide adequate separation and

taxiway/runway incursion protection (especially in low-visibility conditions) and must provide

planning and management of traffic in high-traffic densities and for complex airport layouts. The

Surface Operations / ASMGCS system must also be compatible with the overall Air Traffic

Management system that enables gate-to-gate operations.

Figure 2-1 provides a conceptual illustration of an Integrated Surface Operations system. Top-level

system functions are surveillance, traffic routing, guidance, control, and detection and prevention of

taxiway/runway incursions. In addition, data link plays a key role in enabling communications

between end users and the various surface operations sub-systems.

Some of the technologies and systems that will likely play a role in an Integrated Surface Operations /

ASMGCS system are:

1. Satellite-based navigation (Global Navigation Satellite System, GPS)

a) Local Area Augmentation System (LAAS)

b) Wide Area Augmentation System (WAAS)
2. Data link

3. Surveillance

4. Advanced information presentation displays

5. Ground automation systems

a) Surface Movement Advisor (SMA) providing traffic routing and planning

b) Airport Movement Area Safety System (AMASS) providing runway incursion alerts

c) Smart airport lighting, e.g., SMGCS

6. Airport data bases

7. Airport lighting

8. High-speed Roll-out Turn-Off (ROTO)

9. Head-up displays

10. Enhanced Vision Systems

2-1
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2.2 L VLASO Demonstration System

The system demonstrated at Atlanta consists of several subsystems that were integrated to

provide the intended capabilities of increased situational awareness and guidance information to

air traffic controllers and pilots in conducting efficient and safe surface operations. Both ground
sub-systems and airborne sub-systems provide services to meet the overall operational goals.

2.2.1 LVLASO Ground System Architecture

The LVLASO ground system is shown in Figure 2-2 and consists of the following sub-systems:

1. Surface surveillance sub-system

a) Airborne Surface Detection Equipment (ASDE-3) surface radar (skin-paint radar,

counterpart to primary radar used in enroute surveillance).

b) Airport Traffic Identification System (ATIDS)

Multilateration surveillance on transponder transmissions

(signal received by multiple sites, position calculated from time-of-arrival of signals

at each site)

Automatic Dependent Surveillance broadcast (ADS-B)

(GPS position reports using Mode-S extended squitters)

c) Airport Movement Area Safety System (AMASS)

- Automation system that provides runway incursion warnings

- Data fusion of surveillance reports from ASDE-3, ATIDS and ARTS (Automated

Terminal Radar System)

2. VHF Traffic data link (broadcast uplink of traffic information and runway holdbars)

3. Differential GPS (DGPS) base station and VHF DGPS data link (broadcast uplink of DGPS

corrections information)

4. Controller Pilot Data Link Communications (CPDLC)

5. Data Acquisition

(data recording of all ground system data transactions, e.g., DGPS uplink information,

CPDLC messages, and Traffic Data_

The physical location of ground systems was as follows: 1) surveillance systems and VHF Traffic

data link were located at the Atlanta control tower; 2) the DGPS base station, VHF DGPS data link,

the Controller Interface, and one of the five ATIDS (or CAPTS) Receiver/Transmitters (ground

portion of Mode-S link) were located at the Renaissance Hotel located immediately to the North of

the airport.

A room in the Renaissance Hotel was set up as a pseudo ATC tower cab, with a test controller

serving to intercept actual controller voice communications to the NASA 757 research aircraft

(which served as the test vehicle) and converting them to data link messages. A remote AMASS

display was provided via modem link to provide the surface traffic display that controllers

typically see. Video telemetry of live video of NASA 757 aircraft displays (head-down taxi

display (HDD) and the head-up display (HUD)) and outside visual scenes from nose and tail-

mounted cameras on the 757 was provided for viewing in the hotel "demonstration" room.
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2.2.2 Airborne Systems

The NASA 757 experimental system architecture is shown in Figure 2-3. LVLASO aircraft sub-

systems are as follows:

1. Data Links

a) VHF Traffic broadcast data link receiver

b) VHF DGPS broadcast data link receiver

c) CPDLC via Mode-S link

d) ADS-B downlink broadcast using Mode-S extended squitters

2. Airborne GPS receiver

(provides DGPS position accuracies using DGPS corrections inputs from VHF DGPS data link)

3. Displays

a) Airport moving map LCD display (HDD)

b) Roll-out, turn-off and taxi guidance HUD

4. Pilot input device

(allows pilot to select display modes and zoom levels; also serves as data link

acknowledgment to CPDLC messages).

5. Data acquisition system

(data recording of all aircraft system data transactions, e.g., received and transmitted data

link messages, GPS sensor outputs, etc.)

The next section examines each of the LVLASO sub-systems that were supported by Collins in

more detail and includes performance results where they are available. The LVLASO sub-systems

supported by Collins are:

1) DGPS base station

2) VHF data links

a) Traffic broadcast transmitter and receiver

b) DGPS broadcast transmitter and receiver

3) Airborne GPS sensor

4) Mode-S transponder and associated Airborne Data Link Processor (ADLP)

(The ADLP provides the Mode-S Specific Services (MSSS) for ADS-B and CPDLC)

5) LCD Head Down Display (HDD) taxi display and Remote Interface Unit (RIU)

(RIU provides interface between NASA Silicon Graphics computer and the LCD HDD)
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2.3 L VLASO Sub-System Description and Performance Results

This section describes each sub-system in more detail and, when available, provides performance

results and observations based on data collected during preliminary sub-system tests and also

during the actual LVLASO flight tests and industry demonstrations.

2.3.1 DGPS Sub-System

A Collins DGPS base station provided the DGPS corrections information, which was then broadcast

via VHF DGPS data link. Figure 2-4 shows the DGPS base station and VHF data link configuration.

A Collins GNR-4000 GPS receiver in the NASA 757 provided DGPS position reports for use by

aircraft systems. NASA used a GPS survey system on the ground and onboard the aircraft (Ashtec

GPS) to record "truth" position data for later post-processing. Initial DGPS performance results

indicate the following performance for a 30 minute flight test nm (other runs appear similar):

1) Horizontal RMS position error (mean = 0.728 m, standard deviation = 0.485 m)

2) Cross track error (mean = 0.056 m, standard deviation =0.494 m)

3) Along track error (mean = -0.142 m, standard deviation =0.706 m)

Active

TAntenna

COM 1

GPS
Receiver

COM2

/
Corrections

RS232 "-

I

ARINC

RS232to ] 429 I VHF I

AoRlnNveCrt4ey_ Tranimitter

I Tune I
I Head I

Figure 2-4 Differential GPS Base Station and VHF Data Link

2.3.2 VHF Data Links

Two identical pairs of broadcast VHF data links were utilized for 1) DGPS corrections uplink

and 2) Traffic and AMASS runway holdbar information uplink. The VHF data links are

prototype 31.5 kbps, D8PSK modulation radios similar to those planned for SCAT-I data link

(RTCA DO-217, Appendix F).

2.3.2.1 VHF DGPS Data Link Coverage Tests (Van Taxi Tests)

In preparation for the formal LVLASO flight tests and demonstrations, VHF data link coverage

tests were conducted on two separate occasions at Atlanta's Hartsfield. The purpose of the

initial test was to determine siting locations and expected airport surface coverage of the two

VI-IF data links and their respective applications. The VI-IF data link applications that are critical

to the successful demonstration of the LVLASO system are 1) DGPS corrections broadcast

uplink, and 2) Traffic / AMASS holdbar uplink (broadcast of surveillance information for use in

the cockpit, i.e., LCD HDD).
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Theinitial testwasconductedOctober,1996,andutilizedtwoVHFtransmitterslocatedat two

separate sites; l) on the Hartsfield control tower, and 2) on top of the Renaissance Hotel located

directly to the North of the airport (see Figure 2-5 below J0r the location of both sites relative to the

airport layout). Using DGPS corrections inputs from separate DGPS base stations, both VII
transmitters transmitted this information at a one second rate. A van was equipped with two identical

VI-IF pallets, each containing a VHF broadcast receiver and a Collins GNR-4000 GPS receiver which

processed the DGPS correction outputs of the VHF data hnk to compute DGPS position. The GPS

receiver, in addition to providing DGPS position outputs at a one second rate, was modified to also

provide an indication of whether or not a DGPS data link message was received, and if so, whether the

CRC error correction code was successfully decoded indicating an error free message. A 24-bit CRC
was used based on an earlier version of the GPS ARINC Characteristic 743.

Taxi Routes

Airport surface coverage tests were performed by taxiing the airport surface while recording the

GPS position and data link status information. It was thus possible to plot data link status as a

function of location on the airport. Two distinct coverage routes were traversed in the coverage test:

1) ramp areas and the airport loop road surrounding the airport, and 2) all runways and taxiways. In

ramp areas, maximum line-of-sight (LOS) blockage areas were traversed to the greatest extent

possible to determine data link performance. These areas are primarily near the West walls of the

passenger terminal buildings. Figures 2-5 and 2-6 illustrate the two coverage routes. Taxi tests

were conducted during the night to gain access to the airport surface when traffic was low.

VHF Frequency Assignments

Two frequencies were assigned to the coverage test by the FAA; 118.2 MHz and 128.5 MHz. These

assignments were maintained for all tests conducted at Atlanta, with the control tower VHF

transmitter tuned to 128.5 MHz, which ultimately was used for VHF Traffic / AMASS holdbar data

link, and the Renaissance Hotel VHF transmitter tuned to 118.2 MI-Iz for VHF DGPS data link.

Antennas - Polarization and Placement

Both vertically and horizontally polarized antennas were tested to determine the effects of

polarization on surface coverage. Several types of antennas were used: 1) folded dipole

antennas that were oriented either vertically or horizontally (primarily at the control tower and

the hotel, 2) a magnet-mount whip antenna for the van, and 3) a turnstile antenna, consisting of

two crossed dipoles, for omnidirectional horizontal polari:e.ation.

Figures 2-7 and 2-8 show antenna placement at the control tower and the Renaissance Hotel,

respectively. Since the control tower has four balconies CqW, NE, SE, SW comers), it was decided

to place a dipole antenna at each balcony to avoid any potential blockage effects to LOS by the

tower. Figure 2-7 shows one of the vertical dipole antennas pointing to the NW. The Renaissance

Hotel is visible to the North of the airport (visible just to the left of the dipole antenna). Figure 2-8

shows a vertical dipole pointed to the South from the hotel. During the actual LVLASO test with
the NASA 757, a horizontal turnstile antenna was used and was located closer to the SE comer of

the hotel roof. While antenna placement at the hotel was optimum for surface operations, it was not

ideal for terminal area operations. From Figure 2-8 it is aaparent that the additional -30 ft structure

seen to the North of the antenna on the hotel roof does provide some signal blockage, primarily

toward the NW direction. During flight tests with the NASA 757 in flight, some degradation in the

data link was observed in the NW comer of the terminal area and this is directly attributable to the

antenna siting. Flight test data link plots are shown later in this section.
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Figure 2-5 Coverage Test of Runways & Taxiways

(Control Tower using Vertical Polarization)

/

/'_."/

Tower

2-9



Figure 2-7 Control Tower Antenna Installation

Figure 2-8 Renaissance Hotel At, tenna Installation
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DGPS Coverage Test Result Summary

The October 1996 VHF DGPS coverage test indicated that both the Control Tower and the

Renaissance Hotel each provided excellent coverage of the airport surface. Message reception rate

was excellent at - 99.75 % for all data link messages sent for all tests combined. There was no

difference in performance for vertical and horizontal polarization. The primary areas where some

messages were lost occurred along the West walls of the terminal buildings, which provide severe

LOS blockage and in the NW comer of the South half of the airport, again where terminal

buildings provide blockage. Some signals were also lost along the loop road, but these occurred in

regions where the loop road was at least 50 ft below the level of the airport surface itself. Tables

2-1 and 2-2 summarize performance results for the October coverage test. A complete description

of the coverage test results are provided in Appendix A, which contains a paper written for the

ICAO GNSS Panel describing the Atlanta DGPS coverage test.

Probability of correctly

receiving a single message Control Tower Stouffer's Hotel

per number of attempts

Single attempt 99.77% 99.73%

Two attempts 99.97% 99.94%

Three attempts 99.995% 99.968%

Four attempts 100% 99.986%

Five attempts 100% 99.995%

Six or more attempts 100% 100%

Table 2-1 Message Reception Probability vs Number of Transmission Attempts (van tests)

Control Tower Stouffer's Hotel

Vertical Polarization, 99.75 % coverage, 99.85 % coverage,

Ramp Area greatest difficulty on West side greatest difficulty between
of Concourses C and D Concourses T, A, and B

Horizontal Polarization, 99.6 % coverage 99.5 % coverage
Ramp Area

Vertical Polarization,

Runways and Taxiways

Horizontal Polarization,

Runways and Taxiways

99.77 % coverage,

almost perfect coverage, a few

minor exceptions on NW
comer of South half

99.95 % coverage,

nearly perfect coverage

99.94 % coverage,

nearly perfect coverage

99.67 % coverage,

almost perfect coverage except
NW comer of South half

Table 2-2 Qualitative Comparison of Transmit Site Performance (van tests)
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The April 1997 test confirmed the results of the earlier test but also provided additional

information concerning the VHF Traffic / AMASS holdbar data link. When transmitting DGPS,

only - 1/4 to 1/3 of the maximum message length of the data link is used. For traffic and

AMASS holdbar information during high traffic times, full length messages are used, thus a test

was conducted to determine coverage for long messages. As expected, message reception rate

for long Traffic messages dropped somewhat to 97.75 % in regions of severe LOS blockage.

This confirmed that the link would work reliably for the LVLASO test.

Based on the coverage test results, it was decided to 1) transmit DGPS from the Renaissance Hotel at

118.2 MHz using horizontal polarization, which concurs with ICAO and RTCA standardization

activity for DGPS data link, i.e., DGPS data link in the aeronautical navigation band (108 to 118 MHz)

uses horizontally polarized signals-in-space, and 2) transmit VHF Traffic / AMASS holdbars from the

control tower at 128.5 MHz, since the LVLASO surveillance sub-system is also located there.

Interface definitions and protocols used in the LVLASO flight test system for VHF DGPS data

link are shown in Appendix B.

2.3.2.2 VHF Traffic and AMASS Holdbar Data Link

The VHF data links used for broadcast uplink of traffic and AMASS holdbar from the

surveillance system were the same type of radio used for VI-IF DGPS data link. As indicated

earlier, the VHF Traffic data link transmitter was located at the Hartsfield control tower and used

vertical polarization at a frequency of 128.5 MHz. For the LVLASO flight test a top-mounted,

conventional VHF Comm blade antenna was used on the NASA 757 for reception of traffic data.

Traffic reports were uplinked once per second. In addition, each second an AMASS runway

status message was sent indicating whether or not runway / taxiway intersections are "hot", i.e.,

not to be crossed, due to an active runway. These runway holdbars are displayed on the HDD for

runway incursion situational awareness.

Traffic information and AMASS runway status is output l:y AMASS each one second

surveillance scan. Traffic data is collected and formatted _y the Data Link Manager (developed

by PMEI Inc., refer to Figure 2-1) for transfer to the VHF data link transmitter. The Data Link

Manager takes as many targets as are available (up to 15) to build a single transmit message. For

the worst case traffic loads of 40 to 50 aircraft observed during the Atlanta LVLASO tests, up to

3 to 4 maximum length messages are transmitted per seco:ld. This is well within the capabilities

of the data link. As indicated above, due to the increased :nessage lengths of Traffic messages, a

slight reduction in message success rates was observed dudng van coverage tests; message

reception rates decreased to -97.5 % primarily in the preslmce of severe LOS blockages.

The VHF Traffic data link performed reliably throughout :he LVLASO flight tests and industry

demonstration. However, due to the deficiencies of the surveillance system (discussed previously),

when the surveillance system fails traffic information becomes unavailable for transmission. As

mentioned previously, latency between actual position anci displayed position of traffic on the

HDD was - 2 seconds and was most noticeable for aircrafl: on take-off or landing.

Traffic / AMASS Message Formats

The physical interface to the VHF Traffic / AMASS holdl:ar data link is an ARINC 429 bus.

The message transfer protocol is described in Table 2-3. From Table 2-3 each ARINC 429 word

contains two bytes of user data. The first ARINC 429 word using Label "045" provides the

message length and indicates the number of Label "046" data messages that are to follow. The

subsequent Label "046" ARINC 429 words contain the daia to be transmitted. The maximum

length message is 249 bytes or 125 ARINC 429 words.
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Tx

Seq

N/A

32

Parity

1 Parity

2 Parity

3 Parity

4 Parity

31 30 29 ........................... 2221 ............................. 14 13..11 109

SSM Spare (3 bits) 1 Data Block Length (13 bits) SSID SDI

SSM 2 "nTransmitted Byte I a Transmitted Byte SSID SDI

SSM 40` Transmitted Byte 3 _dTransmitted Byte SSID SDI

SSM 6 th Transmitted Byte 5 tb Transmitted Byte SSID SD!

SSM 8 th Transmitted Byte 7 th Transmitted Byte SSID SDI

........ 1

Label 045

(start)

Label 046

Label 046

Label 046

Label 046

Label 046

Label 046

n Parity SSM 8 pad bits if odd # of bytes in block

or Parity SSM Last Transmitted Byte
n

Last Transmitted Byte SSID SD1

(n-I) Transmitted Byte SSID SDI

Table 2-3 ARINC 429 Message Input Interface to VHF Data Links

Two types of Traffic / AMASS holdbar messages are sent via VHF data link:

1. Airport Status Message

2. Target Information Message

The airport status message is shown in Table 2-4 and consists primarily of the AMASS holdbar

information. Holdbar encoding is shown in Table 2-5 and shows that there are 44 runway / taxiway

intersections at the Hartsfield airport. This message is sent during each one second surveillance scan

and was used by the NASA 757 to initiate a traffic display scan for the HDD. When a runway is

active and should not be entered, the holdbar is activated (and displayed in "red" on the NASA 757

HDD). The airport status message also has provisions for wind speed, wind direction, and runway

visual range (RVR) information, although this information was not used in the LVLASO flight test.

order of transmission: first byte _ last byte

Data Field Name Description Valid Range for Data Type Interpretation

T Message Type 4 bits ("nibble"), unsigned [1 ] Value is 1 for this message type

0 unused 4 bits ("nibble"), unsigned [0] unused, always 0

A4A3A2AI Runway 8L/26R 32 bits, bit map all (bit map) I=ON, 0=OFF (see Table 2-5)

B4B3B2B1 Runway 8R/26L 32 bits, bit map all (bit map) I=ON, 0----OFF (see Table 2-5)

C4C3C2C1 Runway 9L/27R 32 bits, bit map all (bit map) I=ON, 0=OFF (see Table 2-5)

D4D3D2DI Runway 9R/27L 32 bits, bit map all (bit map) I=ON, 0--OFF (see Table 2-5)

SS Wind Speed 1 byte, unsigned BYTE [0-254] knots

or [255] or FF Hex information unavailable

H2H1 Wind Direction 2 bytes, unsigned WORD [0-359] degrees

or [65535] or FFFF Hex information unavailable

R2R1 RVR 2 bytes, unsigned WORD [0-65534] feet

or [65535] or FFFF Hex information unavailable

Byte #

I

I

2-5

6-9

I0-13

14-17

18

19-20

21-22

Table 2-4 Airport Status Message Format
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Runway 8L/26R

(11 intersections)

Bit 0:

Bit 1:

Bit 2:

Bit 3:

Bit 4: D, D

Bit 5: C, C
Bit 6:B5

Bit 7:A4

Bit 8:B3

Bit 9:B1

Bit 10: H, A
Bit 11-31: 0-filled

Runway 8R/26L

(10 intersections)

E,B
El3

Eli, B10

D, D

B15, A Bit 0:

B13 Bit 1:

B 11, A6 Bit 2:
B7 Bit 3:

Bit 4: C, C
Bit 5:E7

Bit 6: E5, B6

Bit 7: E3, B4

Bit 8: El, B2

Bit 9: H, H
Bit 10-31: 0-filled

Runway 9L/27R

(15 intersections)

Bit 0: M

Bit 1:M20

Bit 2:M18

Bit 3:M16

Bit 4: J, J

Bit 5: K, D

Bit 6: D, D

Bit 7: S, S
Bit 8:M12

Bit 9:M10

Bit 10:M6

Bit 11:M4

Bit 12: T, T
Bit 13:M2

Bit 14: P, L
Bit 15-31: 0-filled

Runway 9R/27L

(8 intersections)

Bit 0:N12

Bit 1: J

Bit 2: K, K

Bit 3: R, N10
Bit 4:N6

Bit 5:N4

Bit 6:N2

Bit 7: P

Bit 8-31: 0-filled

Table 2-5 Holdbar Bit Map (Atlanta Hartsfield Runway Layout)

The second message type consists of target information. The target information message format

is shown if Table 2-6. Message fields consist of the message type, flight number address (eight

ASCII characters), and 32-bits latitude and longitude for _ircraft position. Thus for a single

aircraft, 16 bytes of data are required. The maximum number of targets stored in one message is

therefore 15 aircraft. During peak traffic times, the data link was required to transmit as many as

3 full-length messages per second, which is well within the data link capacity. A 31.5 kbps

D8PSK VHF broadcast data link should be able to suppol7. -240 aircraft using the message

encoding used in the LVLASO flight test.

B_e#

]

1

2-9

10-13

14-17

Data Field

TO A0...A7 L0...L3 E0...E3 ... A0...A7 L0...L3 E0...E3

order of transmission: firstb

Name Description

Cte =_ last byte

Valic_ Range for Data Type Interpretation

[2] value is 2 for this message type

[0] unused, always 0

flight number

(null or spaces if unknown)

[+/- 89.99...] degrees, WGS-84, North is positive

T Message Type 4 bits ("nibble"), unsigned

0 unused 4 bits ("nibble"), unsigned

A7 - A0 1a address 8 ASCII characters

L3 - L0 I _ target latitude 32 bits, FLOAT

E3 - E0 32 bits, FLOAT1_ target longitude [0.0 - 359.99...] degrees, WGS-84, East is positive

A7 - A0 n tb address 8 ASCII characters

L3 - L0 n tb target latitude 32 bits, FLOAT

E3 - E0 n '_ target longitude 32 bits, FLOAT

Table 2-6

flight number

[+/- 89.99...] degrees, WGS-84, North is positive

[0.0 - 359.99...] degrees, WGS-84, East is positive

Target Information Message Format
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Ontheaircraftside,theoutputinterfacefromtheVHFdatalink receiverto the aircraft I/O

network (Figure 2-3) is an ARINC 429 output bus. The file transfer protocol of received Traffic

/ AMASS holdbar data is the same shown in Table 2-3, using Label "045" and "046" ARINC

429 words, each carrying two bytes of data.

2.3.2.3 LVLASO Flight Test VHF Data Link Performance (DGPS)

Data link performance was characterized for the VHF DGPS data link aboard the NASA 757

aircraft by recording DGPS position and data link message status outputs from the GNR-4000

GPS sensor, and also recording received signal strength outputs based on internal receiver

Automatic Gain Control (AGC) information from the VHF DGPS data link receiver. Three states

of message status were recorded; 1) no message received, 2) message received but CRC failed,

and 3) message received and CRC passed successfully indicating a correctly received message.

To facilitate interpretation of flight test results, a Jeppesen chart of the Hartsfield airport layout

is provided in Figure 2-9. Figures 2-10 through 2-15 are six representative VHF DGPS data link

performance plots, depicting the path traversed by the NASA 757 during a particular flight test,

the signal strength (color coded) and providing an indication of message failures (indicated by

larger, color-coded squares). Color coding is as follows:

1. Red signal strength _<- 87 dBm

2. Yellow signal strength -77 dBm to -87 dBm

3. Green signal strength -67 dBm to -77 dBm

4. White signal strength > -67 dBm.

Larger "blue squares" indicate that received messages were garbled (failed CRC) and larger

"magenta squares" indicate messages were not received (recall that messages are sent at a one

per second rate).

Two items of note in examining VHF DGPS data link results from the LVLASO flight tests are

the received signal strength and message loss events. With respect to signal strength, our

primary focus was to ensure proper signal coverage for the LVLASO flight tests. Earlier van

tests provided an indication that signal coverage was excellent for surface operations and

expectations were for continued excellent terminal area coverage for the NASA 757. In terms of

signal coverage, our objectives were met exceedingly well throughout all the flight tests for both

VI-IF data links. The only significant exception occurs in the NW comer of the terminal area,

beyond 5 nmi range, where it is evident that signal blockage due to the additional building

structure atop the Renaissance Hotel plays a significant role (see Figure 2-8).

Figures 2-10 and 2-11 illustrate two flight tests where the NASA 757 performed a flight, with

takeoff on runway 26L and a loop to the NW and subsequent downwind leg, and then turning

South to intercept the Localizer for approach and landing on runway 26 R. In Figure 2-10, the

aircraft did an immediate turn toward the downwind leg, and thus the signal level remained

strong as indicated by the 'white" trace throughout the West portion of the flight path. Even

during the downwind leg that extended - 13 nmi beyond the location of the DGPS base station

and VI-IF Transmitter site (Renaissance Hotel), the signal remained quite strong and no message

failures occurred. In Figure 2-11, the NASA 757 did a more gradual climb and turn and went -8
nmi to the WNW before turning downwind. The signal level dropped severely and some

messages were garbled or lost. Signal level improved substantially on the downwind leg. Some

signal degradation again occurred during the South leg and Localizer capture portion of the

flight, but not as severe. The degradation in the NW comer of the flight path is the direct result

of some signal blockage due to antenna siting of the DGPS data link indicated above.
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Figure 2-9 Jeppesen Chart of Atlav ta Hartsfieid Airport
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Figures 2-12 and 2-13 illustrate data link flight test results when the NASA 757 conducted takeoff

on 8R and flew a downwind leg to return on 8L. The effect of antenna blockage is very evident to

the WNW in the pattern, where numerous messages were either garbled or lost entirely beyond 5

umi range. Figure 2-12 shows the worst case results observed throughout the flight tests. Once

the antenna blockage is no longer a factor, signal strength is very good throughout the flight with

no additional messages failures. Figure 2-13 provides another perspective of a similar flight test,

with a bit more signal degradation evident in the NE corner compared to Figure 2-12.

Figures 2-14 and 2-15 provide flight test data on scenarios that did not include flight. The aircraft

was based at the Mercury Air Center to the North of the airport. In Figure 2-14 the NASA 757

taxied via taxiways Alpha, Dixie, and Echo for a simulated takeoff on 26L. The aircraft then

performed a high-speed ROTO with exit on Echo 3 and return taxi to Mercury Air via Echo,

Charlie and Alpha. As expected, the signal level was very strong throughout the scenario as

indicated by the white Irate. A few messages were actually lost and are attributed to multipath as a

result of the large Delta hangars on the SE corner of the North runway area. Figure 2-14 illustrates

a taxi scenario to the South half of the airport. Again signal levels were strong except in a few

areas along the taxiway directly South of the terminal buildings, where some signal blockages are

observed. Only a couple messages were not received correctly throughout the flight test scenario.

Table 2-7 summarizes the message reception performance of the VHF DGPS data link for flight tests

with the NASA 757. Data collected for both taxi and airborne tests resulted in -99.8 messages

reception probability. (27 errors in 15792 messages for taxi, 76 errors in 37681 messages for airborne

flight tests). Taxi message failures occurred only as single error events. For airborne flight tests one

triple error event and 3 double error events occurred, with all other message failures being single events.

Message failures in the NW corner were excluded since they are clearly due to line-of-sight blockage

effects due to the hotel. Even when counting the message failures in the NW corner (with suboptimal

antenna siting), the message reception probability is 99.2%.

The few message losses that did occur were in the vicinity of the following regions: 1) in the vicinity of

the Mercury Air (AS) / Taxiway A intersection (multipath), 2) in front of the Delta Hangar to the Southeast

of runway 8R/26L (multipath), 3) on the South half of the airport when the line-of-sight is blocked by

terminal buildings (particularly Terminal E), 4) for a brief instant at the time the NASA 757 rotated when

executing some of the takeoffs on runway 8R (multipath and/or aircraft antenna null), 5) a few occasions in

the ENE corner during flight, and 6) the NW corner due to line-of-sight blockage effects by the hotel.

Probability of correctly Taxi only tests Airborne tests Total all flight tests

receiving a single message (15792 messages) (37681 messages) (53473 messages)
per number of attempts

Single attempt 99.83% 99.80% 99.81%

Two attempts 100% 99.992 99.994%

Three attempts 100% 99.997% 99.998%

Table 2-7 Message Reception Probability vs Number of Transmission Attempts (757 tests)

The VHF Traffic / AMASS holdbar data link was not characterized in detail but also provided reliable

coverage throughout all flight tests. As indicated previously, traffic messages are somewhat more

vulnerable due to increased message length (Recall that van tests indicated - 99.75 % and -97.5 %

message reception rates for DGPS and Traffic / AMASS, respectively. Refer to Sections 2.3.2.1 and

2.3.2.2). The traffic / AMASS holdbar application did not utilize a CRC for error detection. However,

reasonableness checks on message length and various message fields were made to reject erroneous

traffic reports to minimize display of misleading information to the pilot via the HDD.
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Figure 2-10 Flight Test Scenario # 1 - Takeoffon 26L, Downwind Leg, Landing on 26R
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Figure2-11 FlightTestScenario# 2 - Takeoffon 26L, Downwind Leg, Landing on 26R
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Figure2-12 FlightTestSceurio# 3 - Takeoff on tR, Downwind Leg, Landing on 8L
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Figure2-13 FlightTestScenario# 4 - Tsdueoff on 8R, Downwind Leg, Landing on 8L

2-2!



Figure2-14 FlightTestSceurio # 5 - Taxi-Omly Scenario with High-Speed ROTO

(Leave Mercury Air; taxi via Alpha, Dixie, Echo to 26L; simulate takeoff and perform high-

speed ROTO with exit on Echo 3; taxi back to Mercury Air via Echo, Charlhie and AIpho)

2-22



Figure2-15 FlightTestScenarie#6 - Taxi-OnlyScenariowithHigh-SpeedROTO
(LeaveMercuryAir; taxiviaAlpha,l)ixk, Julietto 27L; simulate takeoff and perform high-

speed ROTO with exit on November 4; taxi back to Mercury Air via November, Papa, Lima,

Dixie and Alpha)
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2.3.3 Mode-SData Link

The MOde-S link was utilized for LVLASO Controller Pilot Data Link Communications (CPDLC)

and also provided ADS-B extended squitters for surveillance. The Mode-S link consists of ATIDS

R/Ts (uplink on 1030 MHz) on the ground and the Mode-S transponder and associated ADLP

onboard the NASA 757 aircraft. The Mode-S transponder / ADLP provides the Mode-S Specific

Services (MSSS) protocols needed for addressed CPDLC communications and broadcast ADS-B.

2.3.3.1 CPDLC Data Link

Controller - pilot data link communications for LVLASO were conducted as follows; 1) a test

controller repeats actual ATC communications to the NASA 757 aircraft to convert the message

into a data link message, 2) the data link message is encoded using RTCA DO-219 message

encoding, using existing messages when possible, but also required development of new messages

when not available, 3) encoded messages are sent to the ATIDS master workstation (see Figure 2-

2) via modem for further encoding to MSSS protocol and subsequent transmission via 1030 MHz,

4) the NASA 757 Mode-S transponder receives the uplink message, decodes it (sending a

transponder reply to acknowledge receipt of the interrogation) and provides it to the I/O network

and flight computer for display on the HDD to the flight crew, 5) the flight crew acknowledges

the message using the pilot interface device (PID), which encodes a downlink message via the

Mode-S transponder/ADLP using DO-219 and MSSS pro:ocols (1090 MHz downlink).

Note: Message retry protocols were implemented in the event a data link message collided with

another transmission on the MOde-S link, which is entire1/possible due to the random access

protocol used by the Mode-S link. In addition, controller messages were highlighted to the

controller when acknowledgments occurred. Failure to receive acknowledgments were thus

immediately evident to the ATC controller.

Table 2-8 summarizes the CPDLC messages used in the I VLASO flight test.

LVLASO Uplink Messages

Element ID Message

117 Contact [icaoname] [frequency]

120 Monitor [icaoname][frequer cy]

200 Hold Short [position]

212 Taxi [runway] Via [route]

219 Taxi [ramp] Via [route]

220 Cross [position] [without delay]
221 Continue Taxi

223 Taxi Into Position and Hold

224 Cleared For Takeoff

LVLASO Downlink Messages

1 Roger
3 Unable

202 Taxiway Deviation

203 Turned-off on Taxiway [#]

204 Taxiway Deviation Resolved

Table 2-8 LVLASO CPDLC Messages
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Twomethodsof repeatingand convening ATC voice messages to data link messages were

demonstrated by the test controller: 1) Aural repetition of actual ATC messages using a Verbex

voice recognition unit to digitized the message; 2) touch screen input to enter the data link

message. In both cases, the digital message is encoded using DO-219 encoding.

The Controller Interface voice recognition system requires training to the controllers voice. After

initial adjustments to voice recognition, and reducing the vocabulary to a subset specific to the

Atlanta airport, voice recognition provided -98 % recognition of all messages. It was evident that

voice recognition is preferable over touch screen input due to controller workload. CPDLC raises

significant issues in both the ATC cab and the flight deck in terms of human factors, workload and

maintaining the man-machine interface information flow, which will require further research by

industry. The Controller Interface described above was developed by St. Cloud St. University.

The physical Mode-S data link itself worked as expected, but was at times adversely effect by
ATIDS master work station failures.

2.3.3.2 ADS-B

The NASA 757 aircraft reliably transmitted ADS-B extended squitters at a 0.5 second update

rate. ADS-B squitters provided aircraft position with DGPS accuracies. ATIDS surveillance of

ADS-B reports is superior to multilateration surveillance, since reception of the signal by just

one ATIDS RJT allows tracking of the aircraft (versus reception by multiple R/Ts for

multilateration).

Figures 2-16 and 2-17 illustrate sample plots for ADS-B surveillance of the NASA 757 aircraft

that were recorded. Figure 2-16 represents ADS=B surveillance for a taxi test to the South half

of the airport (similar to the Figure 2-15 scenario). From Figure 2-16, obvious LOS outages are

observed whenever the NASA 757 taxied near a terminal building (refer to Figure 2-9 for layout

of airport). The outages are simply explained by the fact that the 5 ATIDS R/Ts are deployed

only on the North half of the airport and thus did not provide LOS to the regions blocked in the

South half. The problem would be easily corrected by proper deployment of ATIDS R/Ts to

include the South half of the airport. With the exception of the blockage regions, ADS-B
surveillance on the NASA 757 was reliable.
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Figure 2-16 NASA 757 ADS-B Surveillance Coverage - Taxi Scenario
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Figure2-17 shows a flight scenario and again demonstrates good ADS-B surveillance with the

exception of some outages in the NE comer of the flight pattern.
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Figure 2-17 NASA 757 ADS-B Surveillance Coverage - Flight Scenario

Schematics of all data links and the GPS sensor and the l_yout of the LVLASO data link and

GPS equipment racks of the NASA 757 used in the LVLASO flight test system are provided in
Appendix B. A detailed description of Mode-S interfaces and communications protocols for all

interfaces associated with the CPDLC link is provided in Appendix C. Figure 2-18 shows a

photograph of the LVLASO data link and GPS sensor equipment rack in the NASA 757 aircraft.

Figure 2-18 LVLASO Data Link and GPS Equipment Rack on NASA 757.
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3. Terminal Area Productivity (TAP) Data Link

3.1 Introduction

This section of the report examines the issues concerning the future direction of aeronautical data

link communications as they pertain to TAP data link and the future Communication Navigation

Surveillance (CNS) / Air Traffic Management (ATM) system that is currently being addressed

within the industry. Since the majority of TAP data link applications are also utilized outside

terminal area airspace, the approach taken here is to examine the overall CNS/ATM data link

environment in developing candidate avionics data link architectures, and then mapping these
results back to TAP data link.

Several data link technologies will play an important role in providing the needed capabilities for

the future CNS/ATM and TAP data link system, each providing specific services that are best

suited to that particular technology. Data link technologies are VHF, Mode-S, HF, and SATCOM

data link. While SATCOM and HF data link have clearly defined roles in the future CNS/ATM

data link system (i.e., providing data link coverage in oceanic and remote-area enroute regions,

the role of VHF and Mode-S data link is considerably less clear. It is the VHF and Mode-S data

links that have the greatest impact on future TAP data link.

At present, two distinct VI-IF data link approaches are currently being developed within the industry

that are central to the future direction of the CNS/ATM and TAP data link system. This report

provides considerable focus on these approaches and develops candidate data link architectures

(from an avionics perspective) in meeting future CNS/ATM and TAP data link requirements.

The two VHF data link approaches that affect the direction of CNS/ATM data link are as follows:

1) Transition from today's VHF ACARS data link (also referred to as VHF Data Link {VDL}

Mode 1) to a higher data rate VDL Mode 2 and subsequently to VDL Mode 3, which

provides the capability for multiple, simultaneous digital voice and data services on a single

25 KHz VHF frequency channel.

2) Self-Organizing TDMA (STDMA) also referred to as VDL Mode 4.

Both of these VHF data link approaches are vying to provide a range of data link applications

and services, some of which are in direct competition with one another, while others may be

more synergistic. The VDL Mode 1, 2, and 3 transition approach is primarily intended to

address the conventional communications services of Air Traffic Services, consisting of Air

Traffic Control (ATC) data link and Air Traffic Services (ATS) such as flight information

services, and Airline Operational Communications (AOC) and Airline Administrative

Communications (AAC). These data link applications are primarily strategic in nature, many of

which would be sent via the Aeronautical Telecommunications Network (ATN).

VDL Mode 4 (i.e., STDMA) is envisioned by its proponents to provide a wide range of data link

applications from tactical, broadcast communications such as Automatic Dependent Surveillance

(ADS-B) and Differential GPS (DGPS or DGNSS) corrections uplink, to tactical non-ATN ground-to-

air and air-to-air services, and the more strategic ATC/ATS and AOC/AAC services indicated above.

Section 3.2 provides an overview of future CNS/ATM data link applications that are currently

being planned the role of the Aeronautical Telecommunications Network (ATN) in providing

these applications, and provides summaries of the various data links candidates that will likely

implement these applications. Emphasis will be on the evolution of the two VHF data link

approaches indicated above (VDL Modes 1, 2, and 3 and VHF STDMA / VDL Mode 4) and
Mode-S data link.
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Section 3.3 provides a brief description of each of the CNS/ATM data link applications and their role

in TAP data link. A more detailed description of VHF data link candidates is provided as an appendix

(Appendix D in Volume II of report) in support of developing data link architectures. Section 3.4

discusses candidate mappings of data link applications to data link architectures / implementation

approaches, while Section 3.5 examines viable CNS/ATM data link architectures from an avionics

equipment perspective. Section 3.6 summarizes conclusions from the viewpoint of TAP data link.

3.2 Aeronautical Data Link Overview

3.2.1 Future CNS/ATM Data Link System

While the current National Airspace System ('bIAS) relies almost entirely on analog voice

communications for Air Traffic Services (ATS) via VHF radio and uses ACARS data link for

AOC, AAC and some limited ATS data link services, it is expected that the use of data link will

greatly expand and play a vital role in the future CNS/AIM system.

The future CNS/ATM system will rely on global satellite navigation, ground-based and satellite-

based communications via the Aeronautical Telecommunications Network (ATN), and on

Automatic Dependent Surveillance (ADS and ADS-B) to bring about needed improvements in

efficiency and safety of operations to address the problems associated with increasing levels of

air traffic. Data link will be an integral part of the future CNS/ATM system and the systems that
support TAP for ATS/ATC communications, ADS-B sur.,eillance, augmentation to GPS for

precision approaches and enhanced navigation, support or'automation functions both ground-

based and in the aircraft to allow 4-D navigation, route nc:gotiation and reduced separation (i.e.,

free flight), and numerous other flight services and traffic services applications. While there will

always be a need for voice communication, its use is expected to decline over time for delivery

of more infrequent, non-routine messages and as backup for data link. Data link is expected to

provide the majority of routine, standard ATC communications.

Figure 3-1 provides a breakdown of data link applicatiom (services) planned for the future

CNS/ATM system and identifies the RTCA subcommittees that are developing standards.

Individual data link applications are listed in Table 3-1. These applications pose different

communications requirements in terms of latency (strate_ ic versus tactical), addressed versus

broadcast, coverage (enroute, terminal area, surface, oceanic enroute or remote areas), capacity,

integrity, availability, and quality of service, i.e., Required Communication Performance (RCP).

A commonly accepted view of the end-state CNS/ATM data link system which addresses many

of these requirement is illustrated in Figure 3-2. Each of the data link applications shown in
Table 3-1 is described in more detail in Section 3.3.

As shown in Figure 3-2 the Aeronautical Telecommunications Network plays a fundamental role

in the future CNS/ATM data link system, providing point-to-point (i.e., addressed) connectivity

between ground and airborne end-user systems. A number of physical data links and sub-

networks are interconnected by ATN. The future CNS/ATM data link system utilizes VHF,

SATCOM, I-IF and Mode-S data links to satisfy the diver:,e communications requirements (RCP)

of end-user applications. SATCOM and HF data link provide services primarily in remote and

oceanic enroute areas where terrestrial VHF and/or Mode-S cannot be employed.

Data link communications via the ATN are strategic in nature and have moderate to high latencies.

Some CNS/ATM communications require tactical commv, nications and will rely on specific (non-

ATN) communications, e.g., Mode-S Specific Services (blSSS) or VHF Specific Services (VSS). In

addition to addressed communications, broadcast services play a vital role in the future CNS/ATM
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datalink system(e.g.,ADS-B, DGPS/DGNSS, FIS-B). Since the ATN does not support broadcast

communications, broadcast data link are typically provided by specific, non-networked services.

SATCOM and HF data links shown in Figure 3-2 are indicated for reference only. The focus of this

paper is on VHF data link (VDL) and the CNS/ATM data link applications that are most appropriately

allocated to VDL. Mode-S enters into the discussion for ADS-B and perhaps tactical ground-to-air

and air-to-air communications, where both Mode-S and VDL specific services are viable candidates.

3.2.2 Aeronautical Telecommunications Network (ATN)

As indicated in the previous section, the ATN provides the interconnectivity of the various

CNS/ATM sub-networks to allow point-to-point communications among end-users. The ATN

accomplishes this intercormectivity and routing of information by using the Open Systems

Interconnect (OSI) layered communications protocols shown in Figure 3-3. The ATN routing

architecture indicating connectivity among the various end-user domains is illustrated in Figure 3-4.

Figure 3-3 shows the 70SI layers that provide various services for the end user, which is

represented by the application layer. The top four layers of the OSI stack (i.e., application,

presentation session, and transport layers) are referred to as the "upper layers" and are defined in
ARINC 637 and ARINC 638 for aeronautical data link communications. The actual ATN router

function is provided by the upper portion of the network layer.

The physical, data link and network layers are referred to as the "'lower layers". While the

physical and data link layers may be different for various aeronautical sub-networks, a common

sub-network interface is defined for all aeronautical data link communications, which allows

ATN interconnectivity via the router. The common subnetwork layer interface to the

aeronautical sub-networks and lower layers is specified by the ISO 8208 protocol.

It is in the lower layers where the various VDL modes utilize different techniques and protocols

(i.e., upper layers are the same, regardless of VDL mode). The differences in the "lower layers" for

the various VDL modes are described in Appendix D.

Due to the multiple protocol layers, ATN communications typically require moderate to high

transfer delays and thus are more appropriate for strategic communications. Low-latency,
tactical communications should be conducted outside of the ATN. For non-ATN

communications, the upper layers are bypassed, with typically only physical layer, data link

layer and perhaps network layer services being used to provide specific services for local

coverage and tactical communications. The VDL Mode 1, 2 and 3 transition plan is intended to

address strategic communications and no VHF specific services (VSS) are currently being

defined. VDL Mode 4 and Mode-S are currently the only available candidate data links that

have VSS and Mode-S specific service (MSSS) capability.

3.2.3 Overview of VHF Data Link (VDL)

3.2.3.1 ACARS VDL Mode 1

Historically, the initial aeronautical data link capability was provided via ACARS data link (i.e.,

VDL Mode 1) over a conventional ARINC 716 AM voice radio for Out-Of-On-In (OOOI) data

link reporting of aircraft operations using a character-oriented protocol (ARINC 618). ACARS

data link use has expanded to include a range of AOC and AAC communications (e.g.,

maintenance reports, engine performance monitoring, flight data, etc.) and also includes some

limited ATS communications (e.g., predeparture clearance, oceanic clearance, and Automatic

Terminal Information Services {ATIS}).
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CNS/ATM Data Link
Type of Service Candidate Data Links

Application

CPDLC

(Controller Pilot Data Link

Communications)

RTCA DO-219

ADS-A (ADS-C)
Automatic Dependent
Surveillance - Addressed or

Contract

RTCA DO-212, ARINC 745

ADS-B

(RTCA SC- 186 MASPS),

Data link for numerous

surveillance and separation

assurance end-user applications

(e.g., CDTI, parallel runway

approaches, entrail climb, etc.)

DGPS/DGNSS

(DGPS corrections uplink)

RTCA SC-159 MASPS and

ICAO GNSSP SARPS

FIS and FIS-B

(Flight Information Services)

- Predeparture clearance

- Digital ATIS,

- TWIP (terminal weather)

- ETRR (taxi ramp route)

- etc.,

Air Traffic Services (ATS) for

Air Traffic Control (ATC),
addressed data link via ATN,

currently only strategic comms

(i.e., moderate latencies)

ATS/ATC addressed

communications via ATN,

strategic (i.e., moderate

latencies)

broadcast data link,

tactical (i.e., low latency

communications)

broadcast data link,

tactical (i.e., low latency

communications)

addressed and broadcast

communications

VHF, SATCOM, and HF
data links

VHF, SATCOM, and HF
data links

Mode-S or VHF data link

VHF data link,

(D8PSK or GFSK

modulation)

VHF data link

TIS and TIS-B broadcast data link Mode-S or VHF data link

(Traffic Information Services)

AOC/AAC

(airline operational and
administrative

communications)

addressed communications via

ATN

strategic (moderate latencies)

addressed communications,

primarily tactical and some

strategic communications

Air-Air Communications

- e.g., trajectory negotiation,
- collision avoidance crosslink

VHF, SATCOM, and HF
data links

Mode-S crosslink (e.g.,
collision avoidance

crosslink) or VHF data link

Table 3-1 Planned CNS/ATM Data Link Applications
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Figure 3-2 CNS/ATM Data Link System

To support future compatibility with ATN, the character-oriented protocol is being upgraded and

replaced with code/byte independent binary-oriented protocols (BOP). The ACARS ARINC 618

protocol is thus being upgraded to the Aviation Packet Comm_mication (AVPAC) bit-oriented

protocols (ARINC 631), which defines the lower 3 layers oft_e OSI stack (Figure 3-3) for VDL.

For VDL Mode I, the physical layer uses 2400 bps Minimum ghift Keying (MSK) modulation

which then modulates the AM carrier. The media access chanlel (MAC) layer, which is the

lower layer of the data link layer, uses Carrier Sense Multiple _,ccess (CSMA) p-persistent

protocol to determine channel access for data link message exchange.
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VHF Frequency Congestion Problem

The use of VHF data link is expected to increase substantially in the future CNS/ATM system.

At the same time, as air traffic levels continue to increase, some regions in the world are already

experiencing shortages in the available number of VHF communications frequencies. This

problem is expected to continue to become more severe and Europe has already mandated

implementation of 8.33 KHz channels for VHF analog voice communications to alleviate

frequency congestion.

In order to provide higher data rates and to provide more efficient use of available frequencies,

i.e., more bits per Hz of bandwidth, industry has arrived at two, distinct VDL approaches. As

indicated earlier, the FAA and Mitre have developed a transition plan from VDL Mode 1 to

Modes 2 and 3, while Sweden has developed an entirely new VDL approach based on self-

organizing TDMA (STDMA) also called VDL Mode 4.

The next sections provides summary descriptions of VDI, Modes 2, 3 and 4, which provide
substantially more system capacity than the current VHF ACARS (VDL Mode 1 system). This

information is later used in developing data link allocations between CNS/ATM and TAP data

link applications and individual data links.

3.2.3.2 Summary of VDL Mode 2

VDL Mode 2 is a data-only data link (i.e., no digital voice capability) that provides an order of

magnitude increase in channel capacity versus VDL Mod:_ 1 (ACARS). The increase in capacity

is the direct result of the 31.5 kbps D8PSK waveform (versus the 2400 bps MSK waveform used

by VDL Mode 1). DSPSK requires a DFU of 16 to 20 dB (compared to 14 dB for analog voice),

which influences frequency reuse. Like VDL Mode 1, VI)L Mode 2 uses Carrier Sense Multiple

Access (CSMA) channel access protocol. In addition, VDL Mode 2 uses the bit-oriented

protocol (versus character-oriented protocol of ACARS) that provides compatibility to the

Aeronautical Telecommunications Network (ATN).

VDL Mode 2 is the simplest of the high-rate VDL modes being developed and is well suited

when channel efficiency and access demands are not at a premium. The CSMA protocol limits

VDL Mode 2 to providing strategic data link communications and cannot be used for time-

critical, tactical communications. VDL Mode 2 is intended for addressed, air-ground

communications, and can also provide a broadcast data lhtk capability for high-rate broadcast

applications, e.g., weather information, including precipitation maps, etc..

In order to achieve a simplex broadcast data link using VDL Mode 2 will require additional

standardization activity to allow the AVLC data link subltyer to be bypassed, eliminating the need

for message ACKs (acknowledgments) that are currently _equired to maintain a link connection.

VDL Mode 2 is defined in detail in the ICAO Annex 10 [ t0] and the associated ISO standards.

3.2.3.3 Summary of VDL Mode 3

Compared to VDL Mode 2, VDL Mode 3 is considerably more complex, providing a wide range

of system configurations for digital voice, data and simultaneous, integrated voice and data
communications via the TDMA time slots. Time slot duration is 30 to 40 ms to accommodate

vocoder frames and range guard time. VDL Mode 3 was designed to make very efficient use of

the 25 KHz channel in order to increase VHF Comm data link capacity and to help alleviate VHF

Comm frequency congestion. VDL Mode 3 data link communications are ATN-compatible.
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WithinasinglefrequencychannelVDL Mode3iscapableof supportingfourdedicatedvoice
sub-channelsor circuits(4Vmode)orcantradeoff oneof thevoicecircuitasashareddata
circuit(3V1Dmode).A 2V2Dmodeallowsadedicatedpairof voicecircuitsto havetheirown
associateddatacircuit. The3Tmodeallowsfor demandassignedvoiceanddata.SinceVDL
Mode3usesdiscreteaddressingin mostof itssystemconfigurations,thisallowsfor "callerID"
and"selectivecalling"andalsoallowsagroundstationtopre-emptanairbornevoice
transmissionduetoastuckmicrophoneconditionorvoicepriority.

Digitalvoiceis accomplishedbyuseof a4800bpsvocoder.Toaccommodatefourvoice
circuitsona25KI-Iz channel requires a signalling rate of-31.5 kbps. Thus the VDL Mode 3

requires 31.5 kbps D8PSK modulation to support the intended voice and data capacity. One of

the considerations in using 31.5 kbps D8PSK in a 25 KI-Iz is its sensitivity to co-channel

interference (D/U). VDL Mode 3 has the ability to mitigate some of this interference by using a

coded squelch, which provides time windows around the time of expected signalling bursts. Any

signal detected outside of these times is considered to be interference and is ignored.

VDL Mode 3 communications are directly under ground station control, which provides centralized

timing and reservation-based access among all users, allowing priority-based access. Airborne users

gain access to the channel using polling and random access for reservation requests to downlink data.

Sufficient guard times are allocated to the TDMA slots to allow collision free communications

for all line-of-sight scenarios (e.g., 200 nmi range or greater).

With its range of system configurations, VDL Mode 3 is ideally suited for providing ATC/ATS

communications of CPDLC, FIS and FIS-B and at the same time provides voice capability. The

end-to-end transfer delay for VDL Mode 3 messaging is expected to be 3 seconds (95% of the

time). This relatively low latency (compared to VDL Mode 2) is sufficient for ATC/ATS

communications currently being planned. Any new requirements for tactical data link messaging

(latencies on the order of 1 second) may not be accommodated by VDL Mode 3.

Unlike VDL Mode 2, VDL Mode 3 will require more significant changes to protocols to allow

for a broadcast data link mode, e.g., uplink of weather information. For broadcast services VDL
Mode 2 is the better candidate.

Much more detail is available in the VDL Circuit Mode MASPS developed by RTCA SC- 172

[12], and Appendix A of the ICAO SP COM/OPS Divisional Meeting [11], although the later is
somewhat dated.

3.2.3.4 Summary of VDL Mode 4

VDL Mode 4 is a data only (i.e., no digital voice) data link that utilizes TDMA channel access

protocols for efficient channel utilization. The signalling rate is 19.2 kbps GFSK. TDMA time

slots are - 13.33 ms long with - 10 ms of the slot available for data transfer, resulting in 192 bits

per slot.

VDL Mode 4 makes integral use of GPS/GNSS time and position information for TDMA timing

and slot selection protocols. All airspace users exchange synchronization bursts (which include

position information) to develop system timing, allowing autonomous, self-organizing network

access. Channel access can also be controlled directly by ground stations. In addition, VDL Mode

4 includes address and slot reservation information within messages to allow all users to build and
maintain a network slot reservation table. This slot reservation table serves as the mechanism for

all users to reserve future time slots for desired signal transmissions, thus minimizing slot transmit
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contention/ collisions. As the network becomes more fully loaded, it may become difficult to find

available slots. VDL Mode 4 utilizes position information on all users to override slot selections

of distant users or those that will not be affected by co-channel interference due to geometry.

A VDL Mode 4 user listens to network transmissions for one superframe (1 minute) before

selecting available time slots. Time slot selections are maintained for 4 to 8 minutes before a new

reservation using different slots is made.

While VDL Mode 4 was originally intended for broadcast services, e.g., ADS-B, it also has

provisions for a range of addressed communications and slot reservation protocols and is thus

capable of providing a number of data link services. Some envision VDL Mode 4 to be a

common CNS/ATM data link for CPDLC, DGPS/DGNSS, AOC/AAC, FIS, FIS-B, TIS-B and

ADS-B data link applications. VDL Mode 4 is capable of both ATN-compatible and VHF

Specific Services (VSS) data link. VSS supports low-latency tactical communications.

While VDL Mode 4 has many attractive features and capabilities, there are also a number of

potential shortcomings. VDL Mode 4, like VDL Mode 3 is considerably more complex than

VDL Mode 2. This is primarily due to the TDMA protocol. In addition VDL Mode 4 is

dependent on precise timing from GPS/GNSS for all users and uses minimal guard times to

attain maximum channel data rate. The VDL Mode 4 network, while extremely flexible, does

not appear as robust as VDL Mode 3, which uses centralized timing control from ground

stations. "Separation of function" of communications, navigation and surveillance is an

important consideration for VDL Mode 4 ,which has a te_dency to promote integration of these

functions. CNS separation of function, i.e., independence among these functions to avoid

common failures, is an important concept in certification of airspace operations.

VDL Mode 4 is highly reliant on low D/U performance of the 19.2 kbps GFSK waveform in order
to avoid co-channel interference effects. The robustness of the waveform reduces the available

signalling rate to 19.2 kbps. The lower signalling rate along with the associated time slot structure

may be inadequate for some high data rate applications st,ch as ADS-B, requiring additional

channel resources. It is likely that a bank of VHF channel resources requiring multiple VH_

receiver and wansmitter modules may be required to satis_ the future CNS/ATM data link

requirements using VDL Mode 4. Since the VHF spectrum is already at a premium, allocation of

additional services to the VHF band (e.g., ADS-B surveil; ance) may not be possible.

ADS-B Considerations

Since VDL Mode 4 is envisioned by some to become the future data link for ADS-B data link,

two significant issues arise: 1) the ability of VDL Mode ,_ to provide the required data link

capacity and coverage for ADS-B, and 2) the interoperabi lity of VDL Mode 4 ADS-B with the

current TCAS / Mode S surveillance system. Since ADS- B is expected to support separation

assurance and collision avoidance applications, additional interfaces to TCAS are required. Dual

equipage is likely needed during any transition phase before a VHF-based ADS-B and ACAS

system can evolve. Since Mode-S is envisioned by some to be the ADS-B data link, with little

additional modifications to the current system, a VDL Mode 4 solution may not be cost effective.
Table 3-2 summarizes ADS-B data link issues for MOde-S and VDL Mode 4.

Note: It is expected that four receivers and two transmitters will be required to support VDL Mode 4

ADS-B in a worst case traffic environment such as the LI_ Basin (refer to Appendix D, Section 4.3.6

for details). Since two Global Signalling Channels are required for enroute ADS-B and two channels

are required for terminal area ADS-B, four receivers are expected to be required in the transition

between enroute and terminal area operations. While the LA Basin represents an extreme traffic
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scenario[4],possiblyinflatingthechannelresourcerequirements,capacitystudiesalsouseideal
channelaccess,correctmessagereceptionandimplythatADS-Breportscanbesentina single
transmission.Anydeficienciesinchannelaccess,needforretransmissionofmessagestoassure
availability,oradditionalmessagetransmissionsduetoadditionalADS-Bdatacanresultin further
increasein requiredVDLreceivermodulesneededto supportADS-B.Furthervalidationisrequired
toconfirmtheestimateof fourreceiverandtwotransmittermodulesforVDLMode4ADS-B.

ATC/ATS Comm Considerations

For VHF Comm applications, VDL Mode 4 does not provide digital voice capability and thus

additional, dedicated radio resources are required to provide both voice and data link services.

The competing V'DL Mode 3 offers integrated voice and data services simultaneously over the

same frequency channel and does not require additional radio resources. In addition, the 31.5

kbps signalling rate supports four voice channels on a single 25 KHz channel and thus provides

efficient frequency use in the crowded V/IF spectntm. Use of 8.33 KHz analog voice channels

in concert with VDL Mode 4 data link may also provides more efficient channel utilization, but

requires separate radios.

VDL Mode 2 is ideally suited for simplex broadcast services. VDL Mode 4 is also capable of
broadcast services but is less effective than VDL Mode 2.

Concluding Comments on VDL Mode 4

While VDL Mode 4 has the potential for becoming a unified data link solution for all CNS/ATM

data link applications, there are also several potentially serious issues of its use as the end-state

CNS/ATM data link for all or even some of these applications. In order to totally resolve these

issues will require significant validation activity. At the same time, the industry has been forging

ahead with definition and development ofMode-S ADS-B and VDL Mode 2 and 3 for ATC/ATS

data link, with several years of development efforts having already been committed. VDL Mode 4

is a relative newcomer to the various ICAO and RTCA industry committees that are developing

data link applications and may have a difficult time gaining acceptance since other solutions are

already well along in the development and validation phase.

3.2.3.5 Summary of VDL Mode Capabilities

All VDL candidates (Modes 2, 3 and 4) provide ATN-compatible, addressed communications

protocols and essentially use the same data link service (DLS) sublayer based on the Aviation

VHF Link Control (AVLC), which is a modified version of the High Level Data Link Control

(HDLC) protocol (ISO 3309). However, significant difference occur among VDL modes due to

the physical layer modulation waveform (D8PSK versus GFSK) and the Media Access Control

(MAC) sublayer (CSMA versus TDMA structure). Based on these differences, the following
observations are made:

1) VDL Mode 2 is a simple data link protocol ideally suited for low capacity ATN-compatible data

link applications, where CSMA protocols provide simple and efficient channel access. In

addition, VDL Mode 2 is the best suited of the three data link modes for simplex broadcast

services (a few minor protocol changes will be required to the current VDL Mode 2 definition).

VDL Mode 3 well suited for ATC/ATS digital voice and data communications and has the

needed flexibility to accommodate a wide range of data link services that can accommodate

3 seconds (95%) end-to-end transfer delays. VDL Mode 3 likely cannot support latencies on

the order of 1 second. VDL Mode 3 is the most frequency efficient of all VDL approaches,

capable of providing up to four voice or combination voice / data sub-channels per a single 25
KHz frequency channel.

2)
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ADS-BRequirement / Issue Mode-S VDL Mode 4

Interference immunity Demonstrated in relatively TBD based on D/U and

high density traffic interference from other VHF

environment for ASGMCS Comm applications

Availability, integrity achievable achievable

Autonomous yes yes in low density traffic,

TBD in high density traffic

Range 100 nmi plus (to be verified) yes (200 nmi)

Traffic density single wideband, high-speed

channel provides capacity

[2][3]

requires several narrowband,

lower-rate channels [4],

potentially requires numerous

channels (to be verified)

Independence of function yes potential problem

(Comm, Nav, Surveillance)

Independent validation of yes no

position

Spectrum and spectrum

availability

Mode-S band already assigned
for surveillance

high, allowing retransmission

of ADS-B reports for

increased availability,
also needed for TCAS/ACAS

Update rate

surveillance via VHF may not

be possible due to frequency

assignment policy;

availability of additional VHF

frequency resources in
crowded band is TBD

low, but may not be as

important in terms of message

retry requirement due to

TDMA protocol (TBD)

likely cannot provide

sufficient capacity to support

ACAS update rates of- 1

second (if required). Requires
numerous channel resources

in high traffic densities.

Compatibility with TCAS and fully compatible with current not compatible, likely a

SSR surveillance, legacy issue system difficult transition period

Full message content of yes not sure

ADS-B report (baro altitude, a/c call sign)?

Hidden user problem no (not for long time periods) TBD

Omnidirectional transmit TBD VHF signal more amenable,

coverage volume TBD

Error correction coding yes, sufficiency to be verified none at physical layer,

potential issue

Table 3-2 ADS-B Data Link Issues for Mode-S and VDL Mode 4
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3) VDL Mode 4 is a highly flexible, ATN-compatible, addressed data link. In addition VDL

Mode 4 is capable of VHF Specific Services to provide broadcast and low-latency addressed

communications. Similar to Mode 2, VDL Mode 4 is a data only (i.e., no digital voice) data

link, requiring an additional radio resource for providing simultaneous voice and data

communications that will be required in the future CNS/ATM system.

In providing ADS-B, VDL Mode 4 requires a bank of four receiver modules and two

transmitter modules to provide the needed capacity. Additional receiver and transmitter

resources are required for other data link services, e.g., CPDLC, FIS, AOC, etc.. It is possible

to combine these applications (in low traffic density areas) on one or a few dedicated

frequency channels (thus saving receiver and transmitter resources). However, this study

assumes that in order to achieve capacities dictated by high traffic areas, separation of

function, and the likely institutional separation of services on dedicated frequencies, separate

radio resource will be required. A fully VDL Mode 4 solution to CNS/ATM data link will

likely result in a VHF data link cabinet with multiple receiver and transmitter modules.

For ADS-B, a VDL Mode 4 solution must consider interoperability with the existing TCAS /

Mode-S surveillance system. IfMode-S is capable of providing the ADS-B function, it will

likely be more cost effective to implement ADS-B via Mode-S due to the legacy of the TCAS /

Mode-S surveillance system. Separation of function, i.e., independence, between surveillance

and communications functions is also a concern for VDL Mode 4 due to the dependence on

GPS/GNSS time and position information for both communications and surveillance.

3.2.4 Overview of Mode-S Data Link

At present, the Mode-S link is used for surveillance applications, supporting ground surveillance

using Secondary Surveillance Radar (SSR) and air-air surveillance and resolution advisory

coordination for collision avoidance using TCAS. Surveillance is provided using interrogation-reply

protocols. Using interrogations and subsequent, precisely timed replies, aircraft position (slant range
and approximate bearing) and identification information are derived. Unlike the old ATC Radar

Beacon System (ATCRBS) transponder, Mode-S provides data link capability and is capable of

broadcast and point-to-point addressed communications using Mode-S Specific Services (MSSS).

Short Mode-S interrogations and replies are 56 bits in length and are used for conventional

surveillance interrogation-reply protocol, with a 24-bit address/parity field provided for aircraft

addressing and identification. In addition, 112 bit interrogations and replies allow for an additional

56 bits of information to be exchanged, while still providing the conventional surveillance capability.

Mode-S data link capability is provided by the MSSS using the Mode-S Specific Protocol (MSP).

MSP supports both addressed and broadcast communications. Uplink and downlink message types

have been defined for ground-air and air-air communications. Uplink format (UF) and downlink

format (DF) message types 0 and 16 represent short and long Mode-S interrogation /reply messages,

respectively, for air-air data link with TCAS. UF / DF message types 4, 5 and 20, 21 are the short and

long message types used for ground-air surveillance and data link. The DF 17 message type is used for

downlink broadcast of extended squitters for ADS-B (ADS-B is discussed in Section 3.3.3). Mode-S

also has extended length messages (UF/DF message type 24) that do not utilize the typical surveillance

messages and allow transfers of as many as sixteen 80-bit message segments per transaction.

In addition to providing downlink broadcast squitter capability for ADS-B, the Mode-S MSP also

provides the capability for Ground Initiated Comm-B (GICB) data link. Mode-S maintains 255 registers,

each 56 bits long, that store a variety of important aircraft information that can be requested for downlink

transmission by ground station interrogations. This information is collected by the Mode-S and updated
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atspecifiedratestomaintaintheintegrityoftheinforrnalion.Thus,usinginitiatedrequestsallows

aircrafttoreplywiththerequestedreformationusingComm-B replies(i.e.,longreplies).CurrentMode-

S registersinformationdefinitionsand updateratesareli_tcdinTable 3-3.

REGISTER N_ ASSIGNM]_" IVXINUPDATE RATE

0016

0116

0216

0316

0416

0516

06,6

07t6

08,6-0A16

0BIG

0C,6

0D,6- 0E,6

OF,6

1016

Ii16-1716

18,6-IF,6

20,6

21z6

2216

2316

2416

2516-2FI6

30,6

31 t6-3F16

401,

4116

42t6

4316

Not valid N/A

Unassigned N/A

Linked Contrn-B segment 2 N/A

Linked Comm-B segment 3 N/A

Linked Comm-B segment 4 N/A

Extended squirterairborneposition 1.0 s

Extended squirtersurfaceposition 1.0 s

Extended squirter status 1.0 s

(Reserved) extended squirter data TBD

Air/air State information 1 1.0 s

Air/air State information 2 1.0 s

(Reserved) air/air State information TBD

Reserved for ACAS TBD

Data link capability report < 4.0 s

(Reserved)Extension todata link capability 5.0 S

Mode S specific services capability report 5.0 s

Aircraft identification 5.0 s

Aircraft registration number 15.0s

Aerial Positions 15.0s

Reserved for Aerial Positior.s 15.0s

Reserved for Static Aircraft Parameters 15.0s

Unassigned NIA

ACAS active resolution advisory see ACAS SARPs

Unassigned N/A

AircraR inmmion 1.0 s

Next waypoiat identifier 1.0 s

Next waypoint position 1.0 s

Next waypoint h_ormation 0.5 s

Table 3-3 Current Mode-S GICB Register Definition (Mode-S SARPS)
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4416

4516

46t6

47t6

48t6

49t6--4F16

50x6

5116

52t6

5316

54t6

5514

5614

5716-5Et4

5Ft4

60t6-1:'F14

Meteorologicalroutineair report 1.0 s

Meteorologicalhazard report 1.0 s

(Reserved)Flightmanagemen t system Mode TBD

(Reserved) Flight management system Mode TBD

VHF frequency report 5.0 s

Unassigned N/A

Ground/air referenced state vector 0.5 s

Position report coarse 0.5 s

Position report fine 0.5 s

Air referenced state vector 0.5 s

Tactical waypoint I 5.0 s

Tactical waypoint 2 5.0 s

Tactical waypoint 3 5.0 s

Unassigned N/A

Quasi-static parameter monitoring 0.5 s

Unassigned N/A

Table 3-3 Current Mode-S GICB Register Definition (Mode-S SARPS) (continued)

The reformationcontainedintheMode-S registerallowsforimproved surveillanceof aircraftby ground

stations.Inaddition,thisinformationallowsgroundautomationfunctions,suchasCTAS/FMS, toextract

aircraftstate,flightprogrcss,aircraftintent(i.c.,currentand nextwaypointsinflightplan)and

mctcorologicalinformationtoallowimprovcd mctering,aircraftvectoringand time-of-arrivalcalculations

inincreasingefficiencyofoperationsintcrminalarcaswhilemaintainingorimprovingsafety.

ADS-B and/orair-aircrosslinkcan alsocontributctoincreasedefficiencyand safctyof

operationsduringparallelapproachestoclosclyspaccdrunways,by providinga high-rate,low

latencysurvcillanccand coordinationdatalinkbctwcenaircraft,allowingforlow-visibility

operationsusingrunway spacingsthatarccloserthanthoscallowcdtoday.Currently,operations

arelimitedto3400 ftrunway spacingsiftheairportiscquippcdwithPrecisionRunway Monitor

(PRM) equipment. Itisanticipatedthatrunway spacingsof2,500ftorlowcr can bc supported

usingADS-B /crosslinksurveillancebctwecn aircrafton parallelapproachcs.

Insummary, Modc-S MSP iscapableofbothbroadcastand addresseddatalinkapplications,

supportinglow-latency,tacticalcommunications.Thc FAA and RTCA havc indicatedthat

Mode-S datalinkshallbc used forsurvcillanccapplications,i.c.,ADS-B, GICB, TCAS and

possiblyair-aircrosslink.Thus,Modc-S isnotintendedforCPDLC (whichwillbc providedby

VI_ datalink).Howcvcr, inthcterminalarea,particularlyforsurfaceoperation,where time

criticaldatalinkmay bc rcquircd,eitherModc-S orVH:F SpccificServices(VSS) may bc ncedcd

toprovidereliable,low-latencycommunications.

The nextsectionexamines eachofthcplanncdCNS/ATM datalinkapplicationsinrnorcdetail

and identifiesthe impactofeach applicationon TerminalArea Productivity(TAP) datalink.

Table 3-4providesa crossreferenceofdatalinkcapabilityinprovidingrespectivedatalink

applicationservicesand islaterused inmaking allocationdecisions(Section3.4).
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3.3 Overview of Planned CNS/A TM Data Link Applications

This section examines each of the planned CNS/ATM data link applications (shown in Table 3-

1) in terms of their communications requirements as they pertain to their possible allocation to

VDL. Among the top-level communications requirements for each application are coverage,

throughput, latency or transfer delay, addressed versus broadcast, availability, and integrity.

Required Communications Performance (RCP) for the various data link applications are

currently being developed in SARPS developments by the ICAO ATNP. RTCA SC-169 has

published draft MASPS for RCP for Safety Services [1].

3.3.1 CPDLC

Controller Pilot Data Link Communications (CPDLC) provides for routine air traffic

management communications via data link that are currently conducted via voice
communications. These communications include air traffic control and traffic flow

management. RTCA DO-219 defines a message set and provides Minimum Operational

Performance Standards for a number of routine ATC messages.

The DO-219 message set was originally defined primarily to handle ATC communications that occur

during enroute operations. These messages are strategic in nature and can be received within relatively

modest transfer delays (- 1 to 10 sec are appropriate) via the ATN. CPDLC communications are of

high priority for flight safety and thus require high availability and integrity services from the ATN.

At present inconsistencies exist in the various definitions of the CPDLC message set (i.e.,

FANS-1 versus CNS/ATM-1) and the character-oriented and bit-oriented protocols (ARINC 622

and 623 data link layers). Hopefully, these inconsistencies will merge into a cohesive definition

of end-state CPDLC communications, otherwise ground and/or airborne data links will need to

be able to converse in multiple dialects of CPDLC, which is highly undesirable due to cost.

Candidate data links for CPDLC are VDL for enroute operations where a VHF ground network

is available, and SATCOM and HF data link in oceanic and remote enroute operations.

As aircraft approach terminal areas and particularly for surface operations, CPDLC communications

become tactical in nature (i.e., taxi instructions, hold short ofnmway, etc.,). In addition, the currently

defined message set must be upgraded to include surface and terminal area communications.

The current VDL Mode 1, 2 and 3 transition approach is focused primarily on providing strategic

CPDLC communications and is not addressing tactical CPDLC communications at this time.

Worst case VDL Mode 3 latency is expected to be - 3 see (95%). Potential candidates for

providing these tactical CPDLC messages are the VHF specific services (VSS) of VDL Mode 4

and the Mode-S specific service (MSSS).

CPDLC for TAP Data Link

As indicated above, the focus of CPDLC definition activity has been primarily on enroute

operations, with limited focus on terminal area operations. For the LVLASO flight tests, a number

of data link messages were created for surface operations CPDLC data link to supplement those

already defined in DO-219. VHF data link is expected to provide CPDLC data link in controlled

air space. However, for terminal area CPDLC, particularly surface operations CPDLC, low-

latency communications will be required. Whether current VDL Mode 3 can provide the needed
latency requirements are TBD. As indicated above, VSS of VDL Mode 4 or MSSS of Mode-S can

provide the low-latency, tactical communications needed for terminal area CPDLC.
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In terms of message loading, individual aircraft require only minimal capacity (i.e., on the order

of~ 10 bps), thus 31.5 kbps and 19.2 kbps should provide sufficient data link capacity per

frequency channel.

While not categorized specifically as CPDLC, data link support for automation functions, such

as CTAS/FMS, could also be considered to fall into the category ofCPDLC. GICB using Mode-

S is a likely candidate to provide the needed, low-latency aircraft information that supports the

ground automation functions.

3.3.2 ADS-A (ADS-C)

Two forms of Automatic Dependent Surveillance (ADS) data link are being developed; 1)

addressed (also referred to as contract), ADS-A / ADS-C, and 2) broadcast ADS-B. These are

significantly different applications. ADS-A is described in this section. RTCA DO-212 MOPS

and ARINC Characteristic 745 have been developed to define ADS-A data link. ADS-B is

discussed in the next Section (3.3.3).

As indicated ADS-A are addressed, air-ground communications that provide information from

the aircraft to ground stations for air traffic control and management (ATC/ATM) and air traffic

services (ATS) purposes. ADS-A data link is primarily intended for oceanic and remote enroute

operations, allowing ATC to more closely monitor flight progress, aircraft state, meteorological

conditions, etc.. One of the key benefits of ADS-A is the ability for closer spacings between

aircraft in oceanic and remote areas compared to the large range buffers currently used for

spacing. This allows selection of preferred routes and supports higher traffic densities.

ADS-A communications are ground initiated (except for emergencies). Ground stations arrange
communications with individual aircraft on a contract basis using three distinct contract modes: 1)

periodic, 2) event, and 3) demand driven. Typical communications are established using periodic ADS

reports as prearranged between the ground and the aircraft. ADS reports can also be transmitted by the

aircraft as a result of the occurrence of a particular event (e.g., vertical rate event, waypoint change

event, etc.), allowing ATC to track and monitor any significant changes that may impact ATC/ATM.

In addition, the ground station can request specific ADS reports from the aircraft via the demand

contract mode. ADS reports are strategic in nature and are expected to be sent via the ATN using -5

minute reporting rates (-1 minute rates in case of emergencies). ADS-A requires high availability and

integrity to enable closer separation for oceanic and remote area enroute operations.

The Basic ADS Group report contains aircraft position (latitude, longitude, altitude), time stamp

information indicating when the information is in effect, and a Figure of Merit (FOM) which

indicates the quality of the aircraft navigation source. A:ouong the numerous other ADS report

groups that have been defined are the Flight Identification Group, Predicted Route Group, Earth
Reference and Air Reference Groups, Meteorological Group, Intermediate Projected Intent and

Fixed Projected Intent groups, etc., and event groups indicating Lateral Deviation Change,

Vertical Rate Change, Altitude Range, and Waypoint Change events.

ADS-A is primarily intended for oceanic and remote enr)ute regions and utilizes the ATN for
inter-network communications via SATCOM and HF data link. Note: ADS-A could also be

used in controlled enroute regions using VDL, although _he intent is primarily for use in oceanic

and remote areas. VDL Modes 2 through 4 will ultimately all be ATN compatible and can thus

provide the ADS-A service (Mode 1 is expected to be replaced with the higher data rates of

Modes 2, 3 and 4 and is not considered a long-term candtdate for ADS-A.

ADS-A / C for TAP Data Link

ADS-A / C is not intended for terminal area operations.
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3.3.3 ADS-B

Unlike ADS-A(ddressed), Automatic Dependent Surveillance - broadcast (ADS-B) consists of

data link reports from aircraft that are broadcast to all interested ground and airborne users. In

addition, ADS-B provides tactical, low-latency communication within Radio Line of Sight

(RLOS) by using mode specific communications, i.e., non-ATN, which enables a wide range of

time-critical surveillance end user applications using the ADS-B messages set.

RTCA SC-186 recently completed the development of the ADS-B MASPS (version 6.0), which

defines the ADS-B message set in terms of information content and accuracy, specifies ADS-B

report update rates and reception success rates, service availability, and report integrity. Some of

the major surveillance-based applications envisioned to be supported by ADS-B are Cockpit
Display of Traffic Information (CDTI), Airborne Collision Avoidance System (ACAS), conflict

management, ATS surveillance, ATS conformance monitoring, and a runway occupancy and

incursion alert function. These applications impose a range of ADS-B data link requirements to

insure integrity and availability of function.

In addition to the wide range of ADS-B end user applications, a wide range of ADS-B capability

and equipage is envisioned for the various aircraft/vehicle types depending on the level of

capability desired. Low-end general aviation aircraft will likely require a minimal set of ADS-B

capability / equipage, sufficient to achieve desired benefits, while at the same time being

compatible with the overall ADS-B surveillance in the air space system. High-end air transport

aircraft will have increased ADS-B capabilities in support of more complex applications that

provide added benefits, e.g., air-air separation assurance in support of free flight.

The following tables from the ADS-B MASPS serve as a summary of the ADS-B message set

and state data link and operational requirements for several intended ADS-B end-user

applications. Table 3-5 provides a top level summary of the ADS-B message set as a function of

ADS-B applications. Most of the information elements are self-explanatory (NUC represents the

navigation uncertainty category, which indicates the quality of the aircraft's navigation system;

TCP refers to trajectory change point, providing aircraft intent information on planned changes

in the flight trajectory).

Table 3-6 identifies ADS-B performance requirements for a number of air-to-air ADS-B

applications, e.g., conflict avoidance, separation assurance, simultaneous approaches and airport

surface operations. The majority of these applications require high update rates on the order of 1

per second (update success rates). This is particularly the case for simultaneous approaches and

surface operations. Table 3-6 indicates expected acquisition ranges, aircraft / vehicle densities,

alert times, NUC and availability and integrity of ADS-B reports.

Table 3-7 provides a summary for ADS-B performance requirements in support of ground-based

ATS surveillance and conflict management as a function of flight phase. ADS-B report update

rates for enroute, terminal area, and surface operations are 12 seconds, 5 seconds, and 1 second,

respectively, with parallel runway approaches also requiring 1 second updates. Operational

ranges for ATS surveillance can be as large as 200 nmi.

While Tables 3-6 and 3-7 represent air-to-air and ground-to-air surveillance applications,

respectively, it is expected that air-to-air ADS-B applications will be the first to become
operational since they do not require deployment of ground infrastructure. Regardless of air or

ground-based surveillance applications, it is evident that ADS-B requires a tactical data link.
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Table 3-5 Summary of Information Needs for Applications Supported by ADS-B
(from ADS, B MASPS)

3.3..3.1 ADS-B Data Link Considerations

The ADS-B MASPS defines performance requirements independent of any specific datalink

media. Thus any data link system that satisfies the most stringent ADS-B requirements in terms

of message size and corresponding update rate, availability, integrity and coverage is a potential

candidate for ADS-B data link. Several data link approaches are being considered in industry to

provide the ADS-B data link application, the two most prominent being Mode-S and VDL Mode

4 data link. Studies have been conducted that have assessed the capacity (and in the case of

Mode-S the interference effects of ADS-B on existing IC30/I090 MHz transmissions) of

providing ADS-B data link in high density traffic using the Los Angeles Basin as the worst case

traffic load (in excess of 1250 aircraft for a distribution c f airborne and surface traffic) [2] [3] [4].
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These studies suggest that either of these data links can provide the necessary ADS-B data link

capacity. Mode-S uses random access protocols on the 1090 MHz frequency for broadcast of

ADS-B reports. VDL Mode 4 uses TDMA channel access protocols using several dedicated

VHF frequencies for ADS-B for the enroute global signaling channels, terminal area, precision

approach monitor and surface operations. While multiple VHF frequencies would be required
for ADS-B in the LA Basin area, only a subset of these will be required at any given time for

reception in the aircraft. Discussion of the numerous, and somewhat complex issues pertaining
to Mode-S versus VDL Mode 4 for ADS-B data link is deferred to Section 4.3.6 and 4.3.7 in

Appendix D. Implications of the selection of either data link on the future CNS/ATM data link
architecture are addressed in Section 3.5.

3.3.3.2 ADS-B and ACAS (Airborne Collision Avoidance System)

This section examines the relationship between ADS-B and ACAS and its potential impact on

the selection of the ADS-B data link. As indicated above ADS-B is envisioned to support

numerous applications that require surveillance information. These can be categorized as 1)

separation assurance, 2) collision avoidance, and 3) situational awareness. Separation assurance

applications receive ADS-B surveillance information and perform conflict detection processing

to determine when loss of separation may occur. Before this occurs, aircraft can negotiate route

changes that continue to assure separation.

Collision avoidance is intended as a last resort safety function, when the separation assurance

function has failed. Thus, collision avoidance and separation assurance must be independent

functions. Situational awareness provides supplemental information to the flight crew and does

not impose any independence requirements.

Both collision avoidance and separation assurance functions can benefit from data provided by

ADS-B. The current TCAS (also referred to as ACAS II) can greatly benefit from the additional

state vector and intent ADS-B reports in reducing nuisance alarms, particularly when aircraft are

closely spaced as in simultaneous parallel runway approaches. At the same time, ADS-B can be

used to support the separation assurance function associated with closely-spaced parallel

approaches. However, the independence required between separation assurance and collision
avoidance function necessitates that the information used by these systems is also derived

independently (i.e., measured independently not just transmitted independently). TCAS can

accomplish this independence by using active interrogations to confirm the accuracy of the ADS-

B report. It is likely that any new ADS-B and ACAS system must provide this mechanism for

independence.

Another requirement for collision avoidance is that two or more aircraft which have lost

separation coordinate their intended evasive maneuvers. This requires a cross-link between the

aircraft. TCAS accomplishes this using the Mode-S link.

Any new ACAS using ADS-B via a new data link faces the following obstacles:

1) independence of ADS-B data must be assured with the separation assurance function (use of

active interrogations is the likely means), 2) requirement for a cross-link for coordination of

resolution advisories, and 3) compatibility with the current TCAS II which is Mode-S based.

The latter point requires that fielded TCAS equipment be made compatible with any new ADS-B

and ACAS function, or more likely, that a new ACAS be fully compatible with the existing
TCAS.
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Table 3-7 Summary of ADS-B Requirements for ATS Provider Surveillance and

Conflict Management Applications (as a function of Flight Phase)

(from ADS-B MASPS)

Use of a data link that supports future ADS-B and ACAS that is incompatible with Mode-S must

deal with the legacy of TCAS using the Mode-S link. For example, assuming that ADS-B is

provided via a VHF data link such as VDL Mode 4, separation assurance applications can be

developed based on this capability. ACAS on the other hand will consist of TCAS equipment, at
least in the short term, and continues to require transponder equipage for all aircraft. Thus,

during initial deployment of VHF ADS-B, aircraft will require dual equipage with VHF ADS-B
and Mode-S transponders. Not until a VHI: based ACAS is developed, which is capable of

active interrogations (for independence with separation assurance functions) and provides a
cross-link between aircraft for coordination, can the air space system transition to a fully

ADS-B and ACAS system, eliminating the need for Mode-S transponders. During the interim, a

difficult and carefully orchestrated transition away from TCAS to ACAS would be required.

Thus while the previous section indicates that from a technical perspective, ADS-B can be

provided by either Mode-S or VDL Mode 4 data links, the selection of the appropriate data link

is _eatly influenced by the relationship of ADS-B to TCAS / ACAS.
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3.3.3.3 Ground Interrogation of Aircraft Mode-S Registers

In the evolution of the development of Mode-S, 255 regi sters have been allocated within the

Mode-S transponder (also referred to as the Mode-S registers) for storage of a wide range of

useful aircraft information. A number of these registers have been set aside to contain the

extended squitters that represent the ADS-B message set. While the intent of ADS-B is to

broadcast these extended squitters periodically (per the requirements defined by the ADS-B

MASPS) for use by all other users to provide the ADS-B surveillance applications, an alternate or

supplementary approach being considered is to use ground station interrogators for control of this
information. Using this ground-based approach, ground-initiated interrogations using the Mode-S

Specific Protocol (MSP) defined by the ICAO Mode-S Specific Services can request read-outs of

specific registers via transponder replies (also referred to as Ground Initiated Comm-B {GICB}).

Thus, there are two distinct philosophies to surveillance, 1) air traffic control using strictly ground-

based control / surveillance, with the ground being fully responsible for all control, and 2) a shared

responsibility for air traffic management using ADS-B between ground and airborne users, with

reliance on air-to-air separation assurance, while ground stations provide conformance monitoring

of flight progress, and intervene in case of loss of separation. The second approach, where ADS-B

is at parity with the ground surveillance system in sharing responsibility for separation assurance is

the preferred approach by air space users, since it is compatible with the goals of free flight.

A mix of ADS-B and some GICB data link messaging can also be used to provide pertinent

information, such as weather reports by aircraft, and to provide 4-D surveillance for better time-

of-arrival estimation and sequencing by the CTAS (Center TRACON Automation System) to

improve terminal area operations.

ADS-B for TAP Data Link

ADS-B plays a vital role in Terminal Area Productivity (TAP) data link. ADS-B supports

surveillance of aircraft operations in the terminal area aii space, during landing and approach

(including parallel runway approaches) and for surface operations. This is particularly important

during low-visibility weather conditions, when controllers and pilots can no longer rely on visual

contact in conducting operations. For efficient, safe temlinal area operations in low-visibility

conditions, high integrity surveillance using ADS-B is a requirement.

Mode-S and VDL Mode 4 data link are the primary cand idates for ADS-B. The FAA and RTCA
have selected Mode-S as the near-term data link for AD_-B. Both Mode-S and VDL Mode 4 are

expected to provide the necessary data link capacity for t_-m'ninalarea ADS-B for worst case traffic

densities (i.e., LA Basin) [2][3][4]. The 1030 / 1090 M_3z Mode-S link is expected to provide the

required communications performance for terminal area M)S-B (5 sec update rates in terminal

area and 1 sec update rates for parallel runway approaches and surface operations). Four VHF

channels are anticipated to be needed for VDL Mode 4 to provide the necessary capacity and

performance for terminal area ADS-B (refer to Section 4 X.X in Volume II of report).

3.3.4 DGPS/DGNSS (LAAS)

The ICAO Global Navigation Satellite System Panel (GNSSP) and RTCA SC-159 are currently

developing SARPS and MASPS requirements for the Lo:al Area Augmentation System (LAAS) in

support of precision approaches (Cat I, II and III). This activity includes the definition of the

message set and data link for uplink of GPS/GNSS corre:tions and integrity information to airborne

GPS receivers. The DGPS/DGNSS data link application is a broadcast ground-to-air service and is

flight critical, requiring very high integrity, availability, .rod continuity of service. The data link
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requireslowtransferdelays,i.e.,isnon-ATN,onlyusingthephysicallayerandTDMA MAC layer

services. Expected data link coverage range is a 20 to 30 nmi radius from the airport.

The data link defined in RTCA DO-217, Appendix F is the leading candidate for LAAS, using

31.5 kbps D8PSK modulation and TDMA channel access using 0.5 second frames, each

consisting of eight 62.5 ms time slots. This data link approach is being upgraded to meet LAAS

requirements. The DO-217 VHF data link physical layer modulation waveform is very similar to

the VDL Mode 2. Another candidate approach being considered is 19.2 kbps GFSK modulation,

using either the same TDMA slot structure as indicated above or a derivative of VDL Mode 4
TDMA time slots. Data link selection considerations are frequency reuse (based on D/U co-

channel interference of the modulation waveform), data link capacity, and compatibility with

other VDL modes (compatibility with VDL Modes 2 and 3 or with VDL Mode 4).

DGPS / DGNSS for TAP Data Link

DGPS / DGNSS data link will be required for TAP data link for precision approach services and

for low-visibility surface operations when used for navigation guidance. VI-IF data link is the

expected broadcast data link for DGPS / DGNSS using 31.5 kbps D8PSK or possibly 19.2 kbps

GFSK signals-in-space.

3.3.5 FIS, FIS-B

The future CNS/ATM system is expected to provide a number of flight information services

(FIS) that provide for increased flight safety. Some FIS data link services are already in use

(e.g., Predeparture Clearance, D-ATIS). FIS data link uses both addressed and broadcast

communications depending on the application. The following list of FIS applications are either

currently in use or are in the planning stages:

- Predeparture clearance

- Digital Automatic Terminal Information Services (D-ATIS) consisting of latest weather

observations and specific airport data

- Windshear advisory service

- Pilot reports (PIREP) service

- Notice to Airman (NOTAM) service

- Runway Visual Range service

Precipitation map
Terminal Weather Service

1) Terminal Weather Information to Pilots (TWIP) consisting of information from Terminal

Doppler Weather Radar (TDWR) or Integrated Terminal Weather Service (ITWS)

2) Graphical Weather Service (GWS) consisting of precipitation maps and a graphic
version of TWIP

3) Textual weather products.

Some of the above services have been implemented via request-reply ACARS data link (VDL Mode

1), while GWS of precipitation maps and TWIP using image compression and subsequent transmission

via Mode-S extended length messages (ELMs) are also being developed. The motivation for these FIS

products are to utilize the existing ACARS link to provide services and also to use Mode-S to provide

benefits for general aviation aircraft that encourage them to equip with Mode-S transponders. In the

long term, the ACARS FIS data link applications are expected to transition to the higher data rate VDL

modes (VDL Modes 2 and 3 or VDL Mode 4) using ATN-compatible sub-networks.
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In additionto theseaddressedFISservices,theuseof broadcastservices(FIS-B)of graphical
weatherinformationcanbeachievedbyutilizingVDL in abroadcastmode,e.g.,usingVDLMode
2(CSMA)inasimplexbroadcastmode.VDL Modes3and4 couldalsoprovideFIS-Bservices.

FIS, FIS-B for TAP Data Link

The above FIS and FIS-B services are expected to be provided for both enroute and terminal area

operations using VDL Modes 2, 3 or 4.

3.3.6 TIS, TIS-B

Traffic Information Service (TIS) is intended to increase pilot situational awareness by providing

information of proximate traffic to the attention of the pilot and is particularly beneficial to

general aviation pilots. By providing the TIS service, it is hoped that general aviation pilots see

sufficient benefits to equip with Mode-S transponders, wtdch at the same time facilitates the
transition to ADS-B surveillance. The TIS service is provided by ground stations using Mode-S

sensors that are equipped with the TIS software package, which processes surveillance replies to

detect close proximity traffic to TIS equipped aircraft and uplinks this information to that aircraft

as part of a long Mode-S interrogation. In this manner, ]'IS equipped aircraft are informed of

transponder equipped aircraft even if the other aircraft is not TIS equipped. The TIS equipped
aircraft initiates the TIS service by including a TIS request to the ground sensor.

TIS is intended to display traffic within 5 nmi and +/-1200 ft altitude of the requesting aircraft.

Clearly TIS is a tactical data link application and is implemented using mode specific data link

services (i.e., non-ATN).

TIS-B (TIS-broadeast) is a potential data link application for future broadcast services of traffic.

This is particularly important on the airport surface in low-visibility weather conditions, where

the ground surveillance system informs all surface aircrat: and vehicles of the other traffic. Due

to the potential for a large amount of surface traffic, a broadcast data link is more efficient than

using addressed TIS data link. On the airport service, a b-oadcast VHF data link (Modes 2, 3, or
4) similar to the FIS-B data link for weather services coulzl be used to provide this service.

TIS, TIS-B for TAP Data Link

TIS is intended to be a service primarily for low-end general aviation aircraft to aid "see and avoid"

traffic operations and to alert pilots of proximate aircraft. TIS-B is expected to play a significant role

in terminal area operations for situational awareness for both controllers and pilots (Cockpit Display

of Traffic Information). TIS-B was demonstrated in the I.VLASO flight tests and demonstration and

is expected to be a requirement for low-visibility surface 3perations, providing both controllers and

pilots with a consistent view of the traffic environment. A single VHF channel is expected to

provide sufficient throughput to support broadcast uplink of traffic information for greater than 200

aircraft per second (Section 2.4.3.2). At this time, the TIS-B data link concept / application has not

been developed by industry committees. The LVLASO flight test employed an experimental TIS-B

data link to provide traffic information for display in the NASA 757 flight deck.

3.3.7 AOC/AAC

Airline Operational Communications (AOC) and Airline _dministmtive Communications

(AAC) are currently sent via ACARS VDL Mode I addressed data link. In the future CNS/ATM

system, these communications can be sent via VDL Modes 2, 3 or 4 or SATCOM and I-IF data
link in remote areas. These communications are strategic in nature and will be sent via the ATN

between aircraft, the service provider, and the airline.
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AOC/AAC for TAP Data Link

No additional role for AOC/AAC is envisioned. These communications will continue to evolve

in time and are expected to transition to the higher-rate VDL modes (Modes 2, 3, or 4) for higher

update rates and capacity.

3.3.8 Air-Air Communications

Currently the only air-air data link application in use are TCAS air-to-air coordination

interrogations and replies via the Mode-S link between aircraft selecting appropriate resolution
advisories to resolve threatening encounters. In the future the use of Airborne Collision

Avoidance System (ACAS) cross-link is expected to provide improved surveillance for

separation assurance and collision avoidance, by providing an independent cross check on ADS-

B surveillance reports and also providing high update rate, low latency information exchanges

between aircraft. In the near term the Mode-S link is expected to serve as the ACAS cross-link

data link. Another future air-to-air data link application is for route or trajectory negotiations

between aircraft conducting free flight operations.

Air-to-air addressed data link applications are tactical in nature and require use of non-ATN

mode specific service. Mode-S and VDL Mode 4 are candidate data links using MSSS and VSS,

respectively

Air-to-Air Communications for TAP Data Link

Air-to-air communications are expected to provide significant benefits for surveillance during

parallel runway approaches to closely-spaced runways in low-visibility conditions. The exact

role of active air-air crosslink between aircraft on parallel approach and passive ADS-B

surveillance is yet to be determined. However, air-air crosslink will likely be required to assure

independence between separation assurance and collision avoidance functions and to provide

coordination between aircraft as a threatening situation develops.

It is apparent that most of the CNS/ATM data link applications indicated above also play a

significant role for Terminal Area Productivity (TAP) data link. Thus the data link allocations

discussed next (Section 3.4) and the candidate data link architectures (section 3.5) directly apply
to TAP data link.
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3.4. Allocation of CNS/A TM Data Link Applications to Data Links

This section examines possible allocations of CNS/ATM data link applications to respective data

link candidates. From these allocations it then becomes possible to postulate data link

architectures. Tables 3-8 to 3-10 list the anticipated CNS/ATM data link applications and

indicate which of the data links (VDL Modes 1 to 4, Mode-S, SATCOM and I-IF) are likely

candidates in providing the service. Table 3-8 identifies data link allocations for terminal area

and airport surface operations, Table 3-9 addresses cnroute (non-remote area, i.e., with ATC

ground networks in place) operations, and Table 3-109 is for oceanic and remote enroute

operations. From Tables 3-8 to 3-10, it is evident that a wide range of data link mappings are

possible.

In order to compress the available options, data link applications are reduced into four distinct

groups, since it is expected that services within any one of these groups would be assigned to the

same data link. The four data link groups identified are as follows:

1) Air traffic control (ATC) group consisting of CPDLC and ADS-A

2) ADS-B group (ADS-B but may also include TIS and air-air data link)

3) Air traffic services (ATS) group consisting ofFIS, FIS-B, and TIS-B

4) AOC/AAC group for airline communications

Note that DGPS/DGNSS data link has been removed from the list of data link applications since

it is expected that it will be implemented as a separate module within a Multi-Mode Receiver

(MMR) for precision approaches, or within the GPS sensor itself. It is desirable for cost

purposes that the physical layer modulation of the VHF DGPS/DGNSS data link is the same as

that used by VDL, however this is not a requirement. DGPS/DGNSS data link will likely use

either 31.5 kbps DSPSK or 19.2 kbps GFSK modulation and will use its own specific TDMA

frames and time slot structure (i.e., similar but not the same as VDL).

TIS and air-to-air data link (for trajectory negotiation anct/or ACAS cross-link) are grouped with

the ADS-B group. These applications primarily use specific services (i.e., non-ATN) that could

be accomplished via MSSS using Mode-S or VSS on VEL Mode 4. TIS is primarily a service

intended for low-end general aviation users.

In addition, SATCOM and I-IF data links will not be con.,idered in further allocation mappings

since they are used primarily during distinct operational phases (i.e., oceanic and remote enroute)

and can easily be separated from the other more complex data link allocations. Table 3-11

shows a compressed mapping of data link services based on the allocations of Tables 3-8 to 3-10.

Since VDL Mode 4 is relatively new compared to the mere established VDL Modes 2 and 3 and

Mode-S, Table 3-11 is organized as follows. Option #1 c!escribes a data link allocation that does

not utilize any VDL Mode 4 capability (i.e., ATC, ATS _nd AOC/AAC group data links are all

allocated to VDL Mode 2 and / or VDL Mode 3 and ADt;-B is via Mode-S). Subsequent

allocation options that may be feasible allocate an increa_ing number and various combinations

of data link applications to VDL Mode 4. A total of eight allocation options were identified,

with Option #8 consisting of an all VDL Mode 4 data lint system.
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Data Link Application

Option #1

ATC group

(CPDLC, ADS-A)

ATS group

(FIS, FIS-B, TIS-B)

Allocated Data Link
Comments

(From perspective of

VDL Mode 4 allocation)

AOC/AAC group

(airline group)

ADS-B group

Option #2

ATC group

(CPDLC, ADS-A)

ATS group
(FIS, FIS-B, TIS-B)

AOC/AAC group

(airlme group)

ADS-B group

Option #3

ATC group

(CPDLC, ADS-A)

ATS group

(FIS, FIS-B, TIS-B)

AOC/AAC group

(airline group)

ADS-B group

Option #4

ATC group

(CPDLC, ADS-A)

ATS group

(FIS, FIS-B, TIS-B)

AOC/AAC group

(airline group)

ADS-B group

VDL Mode 2 and / or VDL Mode 3

Mode-S

VDL Mode 2 and / or VDL Mode 3

VDL Mode 4

Mode-S

VDL Mode 2 and / or VDL Mode 3

VDL Mode 4

Mode-S

VDL Mode 4

Mode-S

No applications using
VDL Mode 4 in this scenario

AOC/AAC group
via VDL Mode 4

AOC/AAC and ATS groups
via VDL Mode 4

All groups use VDL Mode 4

except ADS-B group

Table 3-11 Data Link Allocations Per Application Groups

3-32



Data Link Application

Option #5

ATC group

(CPDLC, ADS-A)

ATS group

(FIS, FIS-B, TIS-B)

AOC/AAC group

(airline group)

ADS-B group

Option #6

ATC group

(CPDLC, ADS-A)

ATS group

(FIS, FIS-B, TIS-B)

AOC/AAC group

(airline group)

ADS-B group

Option #7

ATC group

(CPDLC, ADS-A)

ATS group
(FIS, FIS-B, TIS-B)

AOC/AAC group

(airline group)

ADS-B group

Option #8

ATC group

(CPDLC, ADS-A)

ATS group

(FIS, FIS-B, TIS-B)

AOC/AAC group

(airline group)

ADS-B group

Allocated Data Link

VDL Mode 2 and / or VDL Mode 3

VDL Mode 4

VDL Mode 2 and / or VDL Mode 3

VDL Mode 4

VDL Mode 2 and / or VDL Mode 3

Comments

(From perspective of

VDL Mode 4 allocation)

ADS-B group
via VDL Mode 4

AOC/AAC and ADS-B groups
via VDL Mode 4

All service except ATC group
via VDL Mode-4

All groups use VDL Mode 4
in this scenario

VDL Mode 4

VDL Mode 4

Table 3-11 Data Link Allocations Per Application Groups (continued)
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Therationalefortheseallocation options using incrementally more VDL Mode 4 use are as follows:

Option #1: No VDL Mode 4; MOde-S ADS-B with all other data link via VDL Modes 2/3.
These data links meet the application requirements and VDL Mode 4 adds no
additional benefits.

Option #2: AOC/AAC to VDL Mode 4, i.e., a new service provider network for airline
communications via VDL Mode 4.

Option #3: AOC/AAC and ATS (FIS, FIS-B, TIS-B) to VDL Mode 4, i.e., all service provider

and flight services data link via VDL Mode 4.

Option #4: All data link via VDL Mode 4, except for Mode-S ADS-B.

option #5: Only ADS-B via VDL Mode 4, all other data link via VDL Modes 2/3.

option #6: All ATC/ATS services via VDL Modes 2/3 using integrated digital voice and data

capability; ADS-B and airline communications via VDL Mode 4.

Option #7: Controller data link (i.e., ATC group) via VDL Modes 2/3 using efficient, integrated
digital voice and data capability; all other data link and ADS-B via VDL Mode 4.

Option #8: All data link via VDL Mode 4.

The next section develops CNS/ATM data link architecU:re candidates based on these eight data

link allocation options.
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3.5. Candidate Avionics Data Link Architectures for CNSIATM and TAP

The candidate data link architectures below are developed for CNS/ATM capable air transport

aircraft and will thus consider worst case data link requirements in terms of 1) number of

services, 2) required communications performance (RCP), and 3) high-density traffic loadings

(e.g., LA Basin being worst case loading). These candidate data link avionics architectures

therefore reflect a typical avionics data link suite required for air transport aircraft.

The following data links are assumed to be included in all of the future CNS/ATM data link
architectures discussed below:

1) WAAS data link (data link accomplished via GPS signal and thus included in GPS sensor).

Dual WAAS GPS receivers are expected to be required.

2) LAAS (DGPS/GNSS) data link is expected to be a VI-IF data link using either 31.5 kbps

D8PSK or 19.2 kbps GFSK. The LAAS data link is expected to be integrated in a Multi-

mode Receiver (MMR) or the GPS sensor and is not considered within the VDL modes

discussed below. Dual or triple redundant MMR or GPS sensors are expected to be required.

3) Dual SATCOM and dual I-IF data link are required for oceanic and remote-area enroute data
link.

3.5.1 VHF Radio Resource Requirements versus Data Link Allocation Options

The data link allocations from Table 3-11 are examined more closely to determine the radio

resource requirements. A number of observations are in order:

1) Conventional analog AM voice capability must be included since not all parts of the world

will have digital voice capability for a very long time.

2) ADS-B end user applications that provide Airborne Separation Assurance System (ASAS),

Airborne Collision Avoidance System (ASAS), and Situational Awareness (SA) are expected

to be functionally integrated in TCAS, FMS etc., avionics equipment.

ADS-B data link candidates are Mode-S data link or VDL Mode 4. For Mode-S ADS-B,

dual Mode-S transponder are required (on/standby).

For low-latency, tactical CPDLC, only VDL Mode 3 and VDL Mode 4 are viable candidates.

VDL Mode 2 (CSMA protocol) is not adequate for low-latency CPDLC. To achieve 1 sec

latencies may require VHF Specific Services (VSS) in place of ATN-compatible services.

Mode-S Specific Service (MSSS) are also capable of low-latency CPDLC. However, FAA

and RTCA have stated that Mode-S shall only be used for surveillance.

VHF/VDL radio tuning/retuning can be accomplished manually by the pilot via aural or data

link instructions from ATC. Tuning/retuning can also be done automatically by FMS or data

link equipment. Radio tuning is accomplished via the physical and data link layers and

should be invisible to the virtual circuit connection of the network layer. There is a potential

for a "make-before-break" requirement, where the next station is contacted ("make") before

the current station is dropped ("break"). If"make-before-break" is a requirement, an

additional radio resource will be required, at least until the new connection is made. For this

analysis, "make-before-break" is assumed not to be a requirement.

Based on VDL Mode 4 capacity studies (refer to Appendix D, Section 4.3.6), for high-traffic

densities, two receive channels are required for enroute ADS-B using the two Global Signalling

Channels (GSCs), and two receive channels are required for terminal area ADS-B. During the

3)

4)

5)

6)
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transition between these operational regions, it is assumed that four ADS-B receivers are

required at a minimum (also two transmitters are assumed, one for GSCs and one for terminal

area ADS-B). These four ADS-B receive channels can be reallocated from enroute GSCs to

terminal area, parallel approach monitoring (PRM) and surface operations (ASMGCS).

7) Reference to VDL Mode 2 implies the following capability: AM voice (25 KHz /

8.333KHz), VDL Mode 1 (ACARS) and VDL Mode 2.

8) Reference to VDL Mode 3 implies the following capability: AM voice (25 K/-Iz /

8.333KHz), VDL Mode 1 (ACARS), VDL Mode 2 and VDL Mode 3.

9) Reference to VDL Mode 4 implies only VDL Mode 4 capability, unless specifically stated
otherwise.

Table 3-12 identifies radio resource requirements versus the data link allocation options

identified in Table 3-11. The initial entry in Table 3-12 is for the conventional system

configuration used in today's air transport aircraft, i.e., three VHF Comm radios (AM voice and
VDL Mode 1) and dual Mode-S transponders for ATC surveillance. The remainder of Table 3-

12 addresses future, end-state CNS/ATM data link requirements, which represent considerably

more data link services and data link capacity requirements then addressed in current avionics.

Table 3-12 lists the data link application allocations and then uses the middle columns to

illustrate radio requirements for "left", "center", and "right" radios. Options #1 to #4 all use

Mode-S for ADS-B. Options #5 to #8 all use VDL Mode 4 for ADS-B. ADS-B via VDL Mode

4 requires multiple transmit and receive resources, thus the conventional "left/center/right" radio

view is replaced with a view point of transmitter and receiver banks that are integrated into one
or more fault-tolerant VI-IF data link radio cabinet.

Table 3-13 provides a condensed version of Table 3-12 i a terms of radio resource requirements

as a function of the data link allocation options consider(d. From Table 3-13 three options are

highlighted that appear to be the most feasible data link :.llocations:

1) VDL Modes 2 and/or 3 for voice and ATC/ATS dat_ link; Mode-S for ADS-B (Option #1)

2) VDL Modes 2 and/or 3 for voice and ATC/ATS da_ link; VDL Mode 4 for ADS-B (Option #5)

3) VDL Mode 4 for all applications (Options #8).

Most of the other options were eliminated, because the mix of allocations to the various VDL modes

results in either a) excessive radio resources being requiI ed, or b) multi-mode VDL radios with both,

Mode 3 and Mode 4 capability being required. Since boh VDL Mode 3 and Mode 4 are both quite

complex, high cost radios would result if both Mode 3 as_d 4 must be supported in a multi-mode radio.

Option #1b provides the least equipage options; VDL Mode 3 provides integrated voice and data

via one frequency channel and reduces the number of resources required. The need for providing

legacy analog AM voice in areas that will not yet have fitly upgraded to VDL Mode 3 will

require an additional radio for simultaneous AM voice aJld CPDLC support. Thus four VDL

Mode 3 radios are required.

Figures 3-6 through 3-9 illustrate several VDL Mode 4 radio implementations using banks of

transmitter and receiver modules. The requirement for nmltiple transmitters and receivers is

primarily due to the ADS-B application. While it is cont:eivable that some data link applications can
be combined over one or a few frequency channels, it is iikely that dedicated radio resources (i.e.,

frequencies) must be provided due to data link capacity and separation of function considerations.

Whether it is more appropriate that all radio modules are integrated in a single, fault-tolerant VHF

radio cabinet, or in several smaller radios is TBD based on failure mode analysis.
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Allocation Option

Option #1a:

(no VDL Mode 4)

Option #1b:

(no VDL Mode 4)

Option #2a:

(AOC on Mode 4)

Option #2b:

(AOC on Mode 4)

Option #3a:
(AOC/FIS on Mode 4)

Option #3b:

(AOC/FIS on Mode 4)

Option #4:

(AOC/FIS/CPDLC on

Mode 4)

Option #5a:

(ADS-B on Mode 4)

Option #5b:

(ADS'B on Mode 4)

Option #6a:

(ADS-B, AOC on

Mode 4)

Option #6b:

(ADS-B, AOC on

Mode 4)

Option #7a:

(ADS-B, AOC, FIS on

Mode 4)

Option #7b:

(ADS-B, AOC, FIS on

Mode 4)

Option #8:
All on Mode 4

Table 3-13

Radio Resources Count

(single-mode VDL Mode 4 radios)

4_(5) VDLMode 2 radios, [NA
2 M_Ie.S ttmlsponder

4 (3 + 1 AM void) VDL Mode 3 radios, NA
2 Mode S transponder

3 (4) VDL Mode 2 radios,

1 (2) VDL Mode 4 radios,

2 Mode-S transponders

3 (2 + 1 AM voice) VDL Mode 3 radios

(possibly 4 due to increased FIS services),

1 (2) VDL Mode 4 radios,

2 Mode-S transponders

3 VDL Mode 2 radios,

2 VDL Mode 4 radios,

2 MOde-S transponders

3 (2 + 1 AM voice) VDL Mode 3 radios,
2 VDL Mode 4 radios,

2 Mode-S transponders

2 VHF Comms (AM voice),
3 VDL Mode 4 radios,

2 Mode-S transponders

4 (5)VDL Mode 2 _,
VDLMOde4 (2to3_,Sto 6RCV) ii _(see Figure 3-5)

4 (3 + 1 AM voice)VDL Mode 3 radios,

VDL Mode 4(2 to 3 XMT, 5 to 6 RCV)

3 (4) VDL Mode 2 radios,
VDL Mode 4 (3 to 4 XMT, 5 tc 6 RCV)

3 (2 + 1 AM voice) VDL Mode 3 radios

(possibly 4 due to increased FI_ services),

VDL Mode 4 (3 to 4 XMT, 5 tc 6 RCV)

3 VDL Mode 2 radios,

VDL Mode 4 (4 XMT, 6 to 8 RCV)

Radio Resource Count

(multi-mode VDL Mode 4 radios)

4 VDL Mode 4 multi-mode radios

(i.e., also capable of AM voice, VDL

Modes 1, 2, and 4), 2 Mode-S

transponders

3 (2 + 1 AM voice) VDL Mode 3 radios,

VDL Mode 4 (4 XMT, 6 to 8 RCV)

VDL Mode 4:(5 to6 _T, 8 _ 10 RCV)

4 (3 + 1 AM voice) VDL Mode 4

multi-mode radios (AM, Mode 1, 2,

3, and 4), 2 Mode-S transponders

4 VDL Mode 4 multi-mode radios

(AM, Mode 1, 2, and 4),

2 Mode-S transponders

4 VDL Mode 4 multi-mode radios

(AM, Mode 1, 2, 3 and 4),

2 MOde-S transponders

4 VDL Mode 4 multi-mode radios

(AM, Mode 4; Mode 1,2(?) for

legacy data link), 2 Mode-S

transponders

_(scc Figure 3-5)

_(see Figure 3-6)

_(see Figure 3-6)

_(see Figure 3-7)

_(see Figure 3-7)

=(see Figure 3'8)

Radio Resource Requirements as a Fu action of Data Link Allocation Option
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3. 6 TAP and CNS/A TM Data Link Summary / Conclusions

Since the TAP data link applications are a substantial subset of CNS/ATM data link, the data

link allocations and candidate architectures discussed in the previous sections are directly

applicable to TAP.

In order to determine the specific data link architecture to be utilized for TAP and CNS/ATM

data link, the following primary issues must be resolved by industry:

The primary issues driving the data link architectures are:

1) Should VDL Mode 4 be used to provide the ADS-B data link application?

While VDL Mode 4 may technically be able to provide the ADS-B capability, requiring

approximately four receiver and two transmitter modules, Mode-S is the likely candidate due

to the compatibility with the current airspace surveillance system. Mode-S ADS-B must still

be validated to provide the desired range, uniform coverage volume and capacity. The FAA

plans to push ahead with Mode-S ADS-B at this time with VDL Mode 4 not receiving further

consideration. VDL Mode 4 could be used as a secondary surveillance system of airport

surface vehicles for surface operations using lower-cost equipment.

2) Should VDL Mode 4 be used as an alternative to VDL Mode 3?

VDL Mode 3 provides integrated, simultaneous voice and data link communications

capability. VDL mode 4 is a data only system. While VDL Mode 3 is relatively complex, so

is VDL Mode 4. Unless VDL Mode 3 falters due to difficulties in providing digital voice

vocoders, VDL Mode 3 is the likely choice.

Thus while VDL Mode 4 is an intriguing data link concept, it may be difficult for it to find a

niche (at least in the interim) against more incumbent Mode-S ADS-B and VDL Mode 3

ATC/ATS data link. That leaves VDL Mode 4 for the remaining applications for AOC/AAC and

possibly DGPS/DGNSS. It is desirable for the DGPS data link to be compatible interms of

signal-in-space with the VDL radios to take advantage of commonality of function.

IfVDL Mode 4 is not used for any of the CNS/ATM data link applications, it is expected that 4

(perhaps as low as 3) VDL Mode 3 radios (single transceiver per LRU) will be required for cockpit

use (and 2 Mode-S transponders).

IfVDL Mode 4 provides all CNS/ATM data link applications, 5 to 6 transmitters and 8 to 10

receivers are expected to be required (Figure 3-8). Mode-S transponders would still be required

for TCAS, until a new VHF-based surveillance system evolves. If all data link applications except

ADS-B use VDL Mode 4, 4 multi-mode VDL Mode 4 radios are needed along with 2 Mode-S

transponders.

Conversely, if VDL Mode 4 is used only for ADS-B, 4 VDL Mode 3 radios are required for

ATC/ATS, and 2 to 3 transmitter and 5 to 6 receiver modules using VDL Mode 4 are needed for
ADS-B. Mode-S transponders are still needed in the interim until a full VHF-based surveillance

system evolves. Other combinations of data link allocations require additional equipment (as

summarized in Table 3-13).
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4.0 Avionics Integration, Retrofit and Integrity Issues for LVLASO

This section briefly examines some of the key issues concerning aircraft avionics integration,

retrofit and integrity related to LVLASO. This topic is very complex and industry developments
of operational requirements in this area are immature at this time.

LVLASO (or ASMGCS) pose complex operational problems when conducting surface

operations in low-visibility conditions and are dependent on the integration of numerous sub-

systems to provide the necessary capabilities. While providing situational awareness to pilots

and controllers in marginal visual conditions is relatively straightforward, providing low-

visibility guidance at low Runway Visual Range (RVR) is considerably more difficult.

Development of low-visibility guidance requirements is only in the early stages in industry
committees.

Some of the key issues concerning the development of LVLASO / ASMGCS are as follows:

1) What are the various operational capabilities and modes of operation envisioned that provide

cost benefits to end users (airlines, ATC, airport operators, etc.)?

2) What are the system requirements (ground-system infrastructure and avionics capabilities)
needed to meet operational goals?

3) What are the availability, continuity and integrity requirements and how will they be
achieved?

4) What are the obstacles to avionics integration and retrofit to provide the needed capabilities?

5) What is the cost of providing the needed system capabilities?

While the ultimate goal of a LVLASO / ASMGCS system is simply stated, "to provide system

capabilities that provide the operational capacity and level of safety achieved in VFR operations

during low-visibility weather conditions", the above questions are difficult to answer.

Using operational requirements developed by RTCA SC-159 [ 15] as guidance inputs, [16] made

a somewhat qualitative assessment of operational modes and the ground infrastructure and

avionics requirements needed to provide the desired operational mode. The following surface
operations modes were considered:

1) Movement area taxiing (taxi speeds of 5,10 and 20 knots at longitudinal aircraft spacings of
100 ft, 500 ft and 1500 ft were considered)

2) Ramp area taxiing (5 knot taxi speed, I00 ft spacings)
3) High-speed Roll-out and Turn-off (ROTO)

4) Take-off

5) Approach and Landing.

Surface operations system functions considered were 1) surveillance, conflict detection and

conflict resolution, 2) traffic planning and routing, 3) guidance and control, 4) navigation, and 5)

communications. Based on these operational modes and system requirements, minimum

avionics capabilities were identified for a range of airport configurations (from non-tower

airports to full capability airports with advanced surveillance, DGNSS / LAAS, data link and
enhanced lighting systems in place) and various RVR conditions. Minimum avionics were

identified based on the controller's ability to control (i.e., "see" all aircraft / vehicles and

maintain adequate spacings between aircraft) and the pilot's ability to taxi and also to avoid
collisions as a shared responsibility with controllers.
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Summary of Minimum Avionics Capabilities as a function of Operational Mode

A summary of the minimum avionics capabilities required as identified by [16] are as follows:

Takeoff operations require a HUD for operations at an RVR of 300 ft.

High-speed ROTO requires:

1) Head-Down Display (HI)D) with GNSS augmentation using the Wide Area Augmentation

System (WAAS) for RVRs down to 1200 ft.

2) HUD/WAAS for RVRs down to 600 ft

3) HUD/LAAS for RVRs down to 300 ft.

For approach/landing operations, use of a head-up guidance system permits landings to lower
minima and reduces the cost of Cat II and III avionics arid training. However, HUD is not a

requirement, but is an option.

Taxi operations consist of traffic avoidance and guidance. Traffic avoidance for higher density

surface traffic (500 ft spacings) requires Cockpit Display of Traffic Information (CDTI), since

the controllers cannot provide proper spacings for collision avoidance and thus pilots share the

responsibility for collision avoidance. CDTI is not required for lower density surface traffic,
where controllers can utilize hold points to achieve enforceable 1500 ft spacings.

Taxi operations guidance requirements require HUD/WAAS, which allows for VFR taxi speeds

(20 knots) for RVR down to 300 ft. Reduced taxi speed,_ (10 knots) at RVRs down to 300 ft are

supported by taxiway lighting.

Queuing operations (prior to takeoff) require HDD/WAAS below 600 ft RVR and a HUD/LAAS
below 300 ft RVR.

For ramp taxi operations use of HUD/WAAS and HDD/WAAS allows taxiing down to 300 ft
RVR with lane lighting. The HDD is also required due to the HUD's limited field 0f view.

Without lane lighting, use of both HUD/LAAS and HDD/LAAS allow taxiing down to 300 ft

RVR. CDTI is also required at these RVRs due to the tu_structured nature of ramp traffic.

LVLASO / ASMGCS Avionics

The LVLASO flight test and demonstration system described in Section 2 provides an indication

of the type of systems capabilities (both ground systems and avionics) that are needed to support
surface operations in low-visibility conditions. Section 3 focused specifically on the future data

link architecture needed and to support Terminal Area Productivity (including LVLASO), which

closely follows the planned CNS/ATM data link system The previous paragraphs also provided a

qualitative assessment of needed minimum avionics capabilities to support the various operational

modes of Surface Operations as a function of RVR. Cle_ly, considerable validation activities

must be conducted to demonstrate the validity of these assessments. In addition, to ensure

availability, continuity and integrity of needed system fiLnctions in support of LVLASO and

ASMGCS, fault hazard analyses are required to determi: le the level of redundancy and cross

checks needed among the various sub-systems to ensure safety of operations. Much work is

required in these areas before LVLASO / ASGMCS sys_.ems can be deployed. However, avionics

requirements can be postulated for a future LVLASO / ASGMCS system as discussed below.
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Thefollowingavionicscapabilitiesarerequiredfor afull capabilityLVLASO/ ASMGCS

system:

1) Displays

- Head-Down Displays (HDD)
-HUD

2) Navigation
- WAAS / LAAS

- Precision approach system, e.g. Multi-Mode Receiver (integrated DGNSS, ILS, MLS)
- Flight management system

3) Communications / Data Link

VHF data link (voice, CPDLC, AOC, FIS, FIS-B, TIS-B, ADS-B (possibly))

Mode-S data link (ATC surveillance, ADS-B (probable), air-air crosslink)

4) Pilot interface

5) Mass storage device for airport data base

In terms of navigation and communications avionics, no additional unique systems are

anticipated to be needed that will not already be required by the future CNS/ATM system.

WAAS and LAAS system defmitions are currently being developed by various industry

committees and are expected to evolve over the next several years. WAAS capability will be

included in future GPS sensors providing precision navigation to support Cat I approaches and

also support surface operations. LAAS is expected to be provided within Multi-Mode Receiver

(MMR) precision approach systems (i.e., DGNSS, ILS or MLS capability). Aircraft are

expected to be equipped with at least dual WAAS systems for Cat I approaches and dual or triple

redundant MMRs for Cat II and Cat III precision approaches. Thus this high integrity capability
will be available for LVLASO / ASGMCS.

For data link communications, the future CNS/ATM system will rely on high integrity CPDLC,

ADS-A/C, ADS-B, AOC, FIS, FIS-B and TIS-B. Again LVLASO / ASGMCS can rely on

utilizing these capabilities to obtain surface operations benefits. While there is some uncertainty

on how data link applications will be allocated to specific data links, future data link avionics

will likely consist of one of two scenarios 1) three to four multi-mode VHF data links, capable of

voice, CPDLC, AOC, FIS, FIS-B, TIS-B and possibly ADS-A; dual Mode-S providing ADS-B

and air-air crosslink or 2) one large or several smaller fault tolerant VHF data link radios

containing a bank of transmitters (total of 5 or 6) and receivers (total of 8-10) to provide the

above data link applications, including ADS-B. Mode-S would still be required for ATC ground
surveillance and TCAS for the foreseeable future.

While no impact is anticipated for data link avionics for LVLASO / ASGMCS, the ground

infrastructure will require that full coverage of the airport surface and terminal area be provided
for all the data link services. Based on the LVLASO flight test results, several observations can

be made concerning data link and surveillance:

1) VHF data link provides excellent coverage of the airport surface and should be able to

support various data link applications, i.e., TIS-B, DGPS, CPDLC and FIS, FIS-B.

2) ADS-B surveillance is required to support high integrity surveillance. While ASDE-3

provides generally good surveillance performance, it has serious multipath / false target
problems that cannot be overcome for high integrity surveillance. For Mode-S ADS-B

surveillance, several ground stations will be required to provide line-of-sight coverage and to
eliminate areas where fading nulls and multipath occur.
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Themostsignificantproblemsfor incorporatingavionicscapabilitiesto supportLVLASO/

ASGMCS are in the area of the display system for older generation aircraft. Today's aircraft

fleet has a high variance in avionics equipage and capability, ranging from "classic" aircraft, that

are non-FMS equipped and use round dial flight instrurn_.-nts for VOR / DME / ILS navigation, to

FMS / EFIS equipped aircraft using CRT stroke displays, and new aircraft with LCD displays.

For new aircraft, it is anticipated that in the longer term, the navigation displays (ND) and

primary flight displays (PFD) will be capable to provide guidance information to the pilot

through all phases of flight, from enroute through approach and landing and then for surface

operations. Thus LVLASO / ASGMCS HDD taxi display capabilities as demonstrated in the T-

NASA system are most easily provided for new aircraft, where sufficient graphics processing

capabilities will be provided.

For EFIS stroke display systems, surface operations displays will be limited to simple stroke

display formats to provide some situational awareness and guidance information to obtain

benefits of operations in low-visibility conditions. The capabilities of graphics processing

among many of these aircraft may be very limited to provide additional display capability.

To provide LVLASO / ASGMCS taxi display capabilities to "classic" aircraft will require major

rework of the entire flight deck to incorporate glass cockpit displays. Unless clear cost benefits

can be demonstrated, such a retrofit seems unlikely.

At the time of writing this report, an equipage study is being conducted for the NASA Advanced

Air Transport Technologies (AATT) program. Commer-ial air transport carriers, regional

airlines, business aircraft and military aircraft are being :_urveyed to determine the levels of

avionics equipage and capabilities of the current fleet. ()rice available, results from this study

will provide important inputs for a range of cost benefit _nalyses for providing future CNS/ATM

capabilities including for LVLASO / ASMGCS.

In addition to the display system, additional processing (:apability will be required for providing

LVLASO / ASGMCS application processing for situati(_nal awareness, guidance, conformance

monitoring, separation assurance, and collision avoidance. Whether these capabilities reside in
the FMS or another avionics processor is to be determin,_'d. Future avionics equipment is being

developed with increasing use of software data loading to facilitate avionics upgrades, thus it is

expected that future LVLASO / ASGMCS capability wil I also be provided in this manner. Since

the future CNS/ATM system will also require and rely on high integrity situational awareness,

guidance, separation assurance and collision avoidance processing, LVLASO / ASGMCS can be

viewed as an additional operational mode of CNS/ATM operation.
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Summary

A VHF broadcast data link using Differential 8-ary Phase Shift Keying

(D8PSK) modulation at a 31.5 kbps signaling rate was evaluated at Atlanta's
Hartsfieid International Airport to determine surface communication

coverage and message reception reliability. This paper describes the results

of our data link test at Atlanta that occurred during October, 1996.
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Airport Surface Communications
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Link using D8PSK Modulation
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Cedar Rapids, Iowa.

Abstract

The future CNS/ATM National Airspace

System is expected to rely on GNSS as its

primary source for navigation. Various GNSS

augmentation system concepts are being

developed by industry to further increase the

integrity, availability, and accuracy of service

of GNSS. In working with NASA Langley
Research Center in developing airport surface

operations technologies, including DGPS

navigation and surveillance, we had the

opportunity to evaluate airport surface data link

performance of a VHF DGPS data link that

augments GPS with differential corrections. A
VII broadcast data link using Differential 8-

ary Phase Shift Keying (D8PSK) modulation at

a 31.5 kbps signaling rate was evaluated at
Atlanta's Harts field International Airport to

determine surface communication coverage

and message reception reliability. This paper
describes the results of our data link test at

Atlanta that occurred during October, 1996.

Introduction

Our association with the NASA Langley

research team, which is developing integrated

surface operations technologies for Low-

Visibility Landing and Surface Operations

(LVLASO) as part of their Terminal Area

Productivity (TAP) program, has allowed us

the opportunity to test and evaluate the

performance of CNS/ATM data links in an

airport surface operations environment such as
Atlanta's Hartsfield. In preparation for

NASA's planned system demonstration of

LVLASO technologies at Atlanta later in 1997,

and with the support of the FAA, we have

evaluated the performance of a VHF D8PSK
broadcast data link that will be used for uplink

broadcast of DGPS corrections data in the

LVLASO system demonstration. The data

links used consisted of a pair of experimental

VHF transmitters and a pair of VHF receivers

that were designed to meet the performance

specifications of the VHF data link defined in

RTCA DO-217, Appendix F (change 1).

Communications coverage tests were repeated

for both vertically polarized and horizontally

polarized signals-in-space in order to

determine their relative data link performance
for the VHF D8PSK data link.

Test Configuration

In preparing for the coverage test we

antictpated that as many as two transmit sites

may be required to provide full airport

coverage. Thus, our strategy was to deploy

two independent VHF transmit stations, one
located at the Atlanta ATC Control Tower and

the other atop the Stouffer's Hotel located just

to th,: North of the airport. Two independent

receive stations were deployed in a van

provided to us by FAA and MIT Lincoln
Laboratories, which was used to taxi across the

airport surface.

We were assigned two frequencies in the VHF
Comm band to conduct the test. The Stouffer's

site, vas tuned to 118.2 MHz, while the Control

Tower site was tuned to 128.5 MHz. Transmit

pow, :r was set to 20 Watts as specified by

RTC A DO-217, Appendix F.

Anterma installations at both the transmit and

rece: ve sites were as follows: At the Control

Tower, four balconies facing NW, NE, SE,
and _W were available for installation of

ante: mas. In order to avoid line-of-sight

bloc_ge due to the tower structure itself we
chose to install four low-cost antennas, one at

each balcony. Each balcony was provided

with a single folded dipole antenna that was
tuned to the center of the aeronautical VHF

Conm/Nav band. All four antennas were

driv .'n by a single VHF transmitter using a

1:4 power splitter. The dipole antennas were

eith('.r oriented vertically or horizontally

depending on the desired polarization.
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A singleantennawasusedatoptheStouffer's
Hotelsitefacingsouthwardtowardtheairport.
A vertically-orientedfoldeddipoleantennawas
usedforvertically-polarizedsignals,whilea
conventionalFM broadcastbandturnstile
antennawasusedforomni-directional,
horizontalpolarization.

Forthevan,aturnstileantennawasinstalled
for horizontalpolarizationandwassharedby
bothVHFreceivers.Forverticalpolarization
weusedamagnet-mountwhipantenna.

Figure1showstheinstallationof oneof the
verticaldipoleantennasatoptheControl
Tower(NWcornerbalcony).Thelowerleftof
thepictureshowstheedgeof therampareaand
showstaxiwaysthatleadtotwoparaUel
runwaysthatareorientedfromlef_toright.
TheStouffer'sHotelcanbeseenacrossthe
airportjustto theleftof theantennaelement.

Figure2showstheantennainstallationatop
Stouffer'sfor theverticaldipole.Alsoshown
aretheGPSantenna(ontripod)andatentused
tosheltertheGPSbasestationandVHFDGPS
Wansmitter. A small portion of the airfield can

be seen on the right side of the photo.

A full layout of the airport is provided in the

performance results section along with the

respective locations of the two transmit sites

(Figure 3).

Data Collection

The following parameters were recorded for

each of the receive stations (one tuned to the
Control Tower, the other tuned to the

Stouffer's frequency) as we traversed the

airport surface: UTC time, latitude, longitude,

altitude (MSL), number of GPS satellites

visible, number of GPS satellites tracked, GPS

navigation mode, and data link status. Data

link status consisted of two status bits, one

indicating whether or not the VHF receiver was
providing DGPS corrections data to GPS; the

other bit indicating the status of DGPS

message CRC decoding (pass/fail). While

received signal levels were not automatically

recorded, we used a spectrum analyzer to

monitor the received signal strength. Signal

levels were recorded manually and time tagged
with UTC time when unusual events occurred.

Figure 1 Control Tower Antenna Installation
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Figure 2 Stouffer's Hotel Anlenna Installation

Line-of-Sight Review of Atlanta
Hartsfield Airport Layout

Based on the layout of the Atlanta airport and

the location of the transmit sites (Figure 3), the

following observations can be made. While

somewhat centrally located, the Control Tower

was expected to experience considerable Line-

of-Sight (LOS) blockages in the ramp areas

between the various concourses, particularly

along the West side of each concourse. The

Control Tower was expected to have direct line

of sight to most runways and taxiways on both
the North and South half of the airport. On the

other hand, the Stouffer's site was expected to

have improved LOS to some of the ramp areas,

but was expected to have somewhat reduced
LOS to runways and taxiways on the South

half of the airport.

Coverage Tests

Four separate test runs were made each lasting

approximately one to two hours. Tests were

conducted in the following order:

l) Ramp area coverage test (areas between

concourses and also the airport utility road

_:hat traverses the periphery of the airport)

using vertically polarized signals as used
for VHF Comm.

2) i(amp area coverage test using
]horizontally polarized signals as used for
VHF Nav.

3) _2overage test of runways and taxiways

using horizontal polarization.

4) Coverage test of runways and taxiways

_lsing vertical polarization.

Due to the high density of traffic, our

coverage tests in the ramp area were

conducted during the hours of 7 PM to 11PM,

while coverage tests of runways and taxiways

were conducted between midnight and 4 AM

whea traffic is considerably less. There was

still a surprising amount of traffic at around

mi& light, but traffic died down by 2 AM.

The van in which we were setup to collect

data was guided around the airport by a pace

car manned by two Atlanta FAA Airways

TrarLsportation Systems employees that were
in constant contact with the Control Tower.
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VHF DGPS Data Link
Performance Results

Ramp Area Coverage

Figures 3 through 6 capture the data link

coverage performance for the ramp area and

the loop road that surrounds the airport. Each

of these figures illustrates the taxi route of the

van (shown by gray path) using one per

second GPS position updates. Each position

report is encoded to indicate whether or not a

successfully DGPS corrections message was

received during the last update. Anomalous

messages, i.e., those that failed the CRC check

due to excessive symbol errors or those that
the VHF receiver was unable to receive are

denoted by circles. As is immediately evident

from the data, the majority of DGPS messages

are decoded correctly.

Figures 3 and 4 illustrate ramp area coverage

results using vertically polarized signals for the
Control Tower and Stouffer's Hotel transmit

sites, respectively. From Figure 3 it is evident

that the greatest concentration of message

failures occurred along the West wall of

Concourses D and E, and occasional message

losses also occurred along the loop road. Some

items of note: We made special efforts to have

the pace car take us as close as possible along
the West wall of the concourses for maximum

LOS blockage to the Control Tower. On a

number of occasions we drove right up to the

concourse wall (30 to 50 ft in height), while on

other occasions we literally drove beneath

large aircraft (747s, 757s, L101 ls, etc.) to
make it most difficult for the data link in terms

of LOS. In addition, on a number of stretches

along the loop road we experienced below

grade conditions of as much as 50 ft

(particularly in the NE, SE, and SW comers).

A final note concerns the tunnel that we passed

through (located just South of the Control

Tower) in order to cross below a taxiway.

Messages from the Control Tower were

received almost unhindered even through the

tunnel, while GPS satellite reception was

totally disrupted.

As expected, the Stouffer's transmitter (Figure

4) provided improved LOS in the ramp areas of

Concourses D and E, while experiencing more

difficulty in the ramp areas of Concourses A
and B due to diminished LOS. The Stouffer's

site also experienced a few message failures

along the loop road. Messages reception in the

tunnel was totally disrupted for the Stouffer's
site.

Figures 5 and 6 provide coverage results for

the ramp area using horizontally polarized

signals for the Control Tower and Stouffer's

transmit sites, respectively. Performance is

comparable to those for vertical polarization
(Figures 3 and 4), with somewhat more

message losses on taxiways in the NW comer

on the South half of the airport, where

relatively severe LOS blockage occurs for
both transmit sites.

Taxiways and Runways Coverage

Figures 7 through 10 capture the data link

coverage performance for taxiways and

runways. Figures 7 and 8 represent coverage
for horizontal polarization for the Control

Tower and Stouffer's sites, respectively.

Performance was improved over those of the

ramp area, although the NW comer of the

South half of the airport again experienced the

greatest number of lost or corrupted messages.
Due to some procedural problems in our initial

taxiing attempts and subsequent coordination

with ground controllers while taxiing on the

North half taxiways, and unexpectedly high
traffic, we failed to gain access to the two

parallel runways on the North half of the

airport. Later tests using vertical polarization

allowed us to capture data for these runways

and due to the excellent message reception

experienced on all runways, we elected not to

repeat this coverage test. Figures 9 and 10

provide taxiway and runway coverage results
for vertical polarization for the Control Tower

and Stouffer's transmit sites, respectively.

Again message reception was quite good for
both sites.
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Figure 5 Coverage for Horizontal Polarization, Control Tower, Ramp Area

)
\

Tower

i

Figure 6 Coverage for Horizontal Polarization, Stouffer's, Ramp Area
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Figure 8 Coverage for Horizontal Polarization, Stouffer's, Runways and Taxiways
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Figure 10
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Evaluation of Results

The message reception rate averaged for all
data collection runs was 99.75% for the VHF

DGPS data link. As indicated in Figures 3 to

10, the entire airport was traversed several

times with relatively uniform spatial

coverage. The results include a number of

areas of severe line-of-sight (LOS) signal

blockage provided by concourses and below

grade regions that occurred along the airport

loop road. The blocking effects of the tunnel
were not included in the calculation of

message reliability.

Most of the relatively few data link message

failures were single duration events, where

signal reception resumed after losing a

message. Most of the garbled or lost

messages are the result of relatively weak

received signals (_ -78 dBm) due to severe

LOS blockages. However, these signal levels
are well above the VHF DGPS receiver

sensitivity and the cause of the link failure

mechanism has not yet been adequately

explained. It should be noted that while we

did observe some multipath fading signal
conditions, these effects seemed relatively

insignificant. Throughout the entire test we

did not observe any deep fades, suggesting
that there were a sufficient number of

reflected signal paths available that would fill

in for any deep fades that would have been
suggested by theory. VHF signal propagation

also allows for some bending of LOS that is

beneficial for providing surface coverage
where,LOS is lost.

We found very little difference in the

coverage provided by the Control Tower and

the Stouffer's transmit sites. Depending on

the final communications requirements for

any data link application such as DGPS, it

appears that a single transmit site is sufficient

in providing full airport coverage. Both,

vertically polarized and horizontally polarized

signals performed equally well in providing

high message reception reliability and airport

surface coverage.

Table 1 provides a more detailed breakdown of

message reception reliability as a function of

message transmission attempts. From Table 1,

the overall 99.75 % message reception

improved to 99.94 % if two transmission
attempts are permitted for receiving a single

message. The most severe communications

failure that was observed was a single event of 5

consecutive dropped messages that occurred on

the lx W comer taxiway on the South half of the

airport for the Stouffer's transmit site. The data

in Table 1 is based on 21,831 message

transmissions (one per second), with a total of

50 message failures being experienced for the

Control Tower and 60 message failures for

Stouffer's, respectively. Table 2 provides a

quali'ative comparison of transmit site

perfc rmance for the Control Tower and the
Stouffer's sites.

Probability of correctly

receiving a single message Control Tower Stouffer's Hotel

per number of attempts

Single attempt 99.77% 99.73%

Two attempts 99.97% 99.94%

Three attempts 99.995% 99.968%

Four attempts 100% 99.986%

Five attempts 100% 99.995%

Six or more attempts 100% 100%

Table I Message Reception Probability versus Dumber of Transmission Attempts
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Control Tower Stouffer's Hotel

Vertical Polarization, 99.75 % coverage, 99.85 % coverage,

Ramp Area greatest difficulty on West side greatest difficulty between
of Concourses C and D Concourses T, A, and B

Horizontal Polarization, 99.6 % coverage 99.5 % coverage
Ramp Area

Vertical Polarization,

Runways and Taxiways

Horizontal Polarization,

Runways and Taxiways

Table 2

99.77 % coverage,

almost perfect coverage, a few

minor exceptions on NW
comer of South half

99.95 % coverage,

nearly perfect coverage

99.94 % coverage,

nearly perfect coverage

99.67 % coverage,

almost perfect coverage except
NW comer of South half

Qualitative Comparison of Transmit Site Performance

Summary

A VHF DGPS broadcast data link using the

D8PSK, 31.5 kbps waveform as per RTCA

DO-217 Appendix F (change 1) was tested

and evaluated to determine its performance in

providing airport surface coverage and

message reception reliability. Atlanta's

Harts field International Airport served as the
site for the test. Two transmit sites were used

to compare airport coverage performance; one

transmitter was located at the Control Tower,

the other atop the Stouffer's Hotel located just

to the North of the airport. Each transmit site

was allocated a dedicated frequency channel

(118.2 MHz and 128.5 MHz). Data link
performance of both transmit sites was

comparable achieving an overall message
reception reliability of 99.75 %. Tests were
conducted for both horizontal and vertical

polarization in order to compare their relative

data link performance. Message reception for

both polarizations was very good with no

perceptible difference in performance. While

pure line-of-sight theory suggests that some

multipath fading could occur, we did not

observe any deep fading effects throughout
the duration of the test. These results confirm

that the beneficial signal propagation

properties of VHF provide a sufficient number

of signal paths and bending in line-of-sight to

provide good coverage of the airport surface.

Depending on eventual system requirements

for surface communications, it is likely that a

single transmit site can provide adequate
coverage of an airport such as Atlanta's
Hartsfield.
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Appendix C

Mode-S Pallet Interfaces and Protocols





Controller Pilot Data Link Communications (CPDLC) Data Link

for

NASA LVLASO Demonstration

Interface Control Document

C-!



1.0 _oduc_on

This document provides an overview of the CPDLC interfaces and describes the Mode-S data link message

formats and protocols that support CPDLC data link for the NASA LVLASO demonstration at Atlanta.

Figure I identifies the interfaces of the various sub-system components of the CPDLC data link system.

Sub-system components consist of the Controller Interface (CI), being developed by St. Cloud State
University; the ATIDS Master Work Station (MWS) and ATIDS Receivers/Transmitters (R/Ts) that are

provided by Cardion; the Mode-S transponder and Airborne Data Link Processor (ADLP) provided by

RockweU-Collins, and the NASA I/O Network and Flight Test Computer.

From Figure l, Interface 'A' between the Control Interface and the ATIDS MWS is documented by [I].

[l ] describes the application data interface, physical layer RS-232/modem interface and associated

communication protocols. CPDLC messages used in the LVLASO demonstrdtion are listed in [1,2].

Interfaces 'B' and 'C' are internal to ATIDS (Cardion) and Mode-S/ADLP (Rockwell-CoUins),

respectively, and will thus not be specified. Section 2 of this document describes Interface A* contained
within the ATIDS MWS (see Figure 1), and Section 3 describes Interface 'D' located between the ADLP
and NASA I/O Network.

t RS232, t ATIES

Controller Modem MWS

Interface A (Interface A*)

J

B

a) Ground Sub-System

ATIDS

Rn'(s)

_ Airborne _ARINC 42_ FO Network

Mode-S _ Data Link &

Transponder Processor Flight Test

C (ADLP) J AR.[NC 429 [ Computer

b) Airborne Sub-',_ystem

Figure 1 CPDLC Data Link System

2.0 A TIDS MWS - Mode-S Interface

While not explicitly shown in Figure 1, the ATIDS MWS is responsl_ole for an additional interface
(Interface A*) that maintains the Mode-S communication pro:ocols with the airborne Mode-S

transponder/ADLP. This section describes the Mode-S conm_tmications protocols that must be supported

by the AT[DS MWS and the airborne Mode-S/ADLP for CPDLC data link. CPDLC data link for the

LVLASO demonstration uses the Mode-S Specific Protocol (_ISP) which is a subset of the Mode-S
Specific Services Protocols (MSSP) [3]. Protocols for uplink and downlink CPDLC messages are
described.
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2.1 Uplink CPDLC Messages - MSP Protocol

Uplink CPDLC messages are uansmitted using the Mode-S Specific Protocol (MSP). Depending on the
overall length of the CPDLC application message, messages are either encoded as Short Form MSP

Packets (for messages of 26 bytes or less) or as Long Form MSP Packets (for message lengths from 27

bytes to 159 bytes). For the LVLASO demonstration system, all CPDLC messages are less than 27 bytes
long and thus only Short Form MSP Packets are required.

The data associated with Short Form MSP Packets is partitioned and inserted into the 56-bit MA subfield

(format shown below) of long (112-bit) Mode-S surveillance interrogations, which serve as the basic building

block for upHnk of MSP messages. The format of the 112-bit Mode-S surveillance interrogation using
Uplink Formats (UF=20 or 21) is descn'bed first, followed by the encoding of Short Form MSP Packets.

2.1.1 Format of 112-bit Uplink CPDLC Mode-S Messages

Uplink CPDLC messages consist of long, 112-bit Mode-S interrogations using Uplink Formats UF=20 or
UF=21. The message format of these interrogations is as follows:

I 'IPC:31R 'IO''I
UF = Uplink Format (5-bit subfield);

SD: 16

PC* = ProtoCol (3-bit subfield);

RR* = Reply Request (5-bit subfield);

DI* = Designator, Identification (3-bit subfield)

SD = Special Designator (16-bit subfield)

MA:56 [ AP:24

All CPDLC uplink messages use either UF=20 (i.e.,

• I0100') for altitude requests or UF=21 (i.e., ' 10101 ") for
identity requests.

Always set to '000" for uplink messages in the LVLASO

demonstration (no change in transponder state).

Always set to '00000' for uplink messages in the
LVLASO demonstration.

This subfield is used to identify the coding contained in

the SD subfield. Always set to '001' for uplink messages
in the LVLASO demonstration (indicates SD field

contains multisite information).

Coding of the SD subfield is as follows:

*Note:

SD Subfield Encoding

I

IIS:4 MBS:2 MES:3 [ LOS: 1

IIS= Interrogator Identifier (4-bit subfield)

MBS* = Multisite Comm-B Subfield (2 bits)

I RSS:2 ] TMS:4

This field is arbitrarily chosen to be

' 1000' for the ATIDS ground

interrogator in the LVLASO
demonstration.

(Note: The Atlanta ground
interrogator IIS code is '0110').

Always set to '00' for uplink

messages in LVI.ASO demonstration.

Encoding of PC, RIL DI and MBS subfields may be different for interrogations that are in response

to requests of air-initiated or multisite-directed downlink CPDLC messages by the aircraft; refer to
section 2.2 for details).
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IVIES = Multisite ELM Subfield (3 bits)

LOS = Lockout Subfield (1 bit)

RSS = Reservation Status Subfield (2 bits)

Always set to '000' for LVLASO

demonstration (no ELM action).

Always set to '0' for LVLASO
demonstration

(no change in transponder all-call

reply lockout state).

Always set to '00' for uplink

messages in LVLASO demonstration

(no reservation status requests).

TMS = Tactical Message Subfield (4 bits) TMS encoding is as follows:

TMS Subfield Encoding

Spare: 1 1 LAS:3

The most significant bit of TMS is a spare bit.

LAS -- Linked Comm-A Subfield (3 bits)

LASVahie _

0 single segment

1 linked, 1'_ segment

2 linked, 2"a but not final segment

3 linked, 3cabut m,t final segment

4 linked, 4_ and final segment
5 linked, 2_ and f-a3al segment

6 linked, 3"_and final segment

7 unassigned.

Note: For the LVLASO demonstration, the maximum length uplink CPDLC

message is expected to require two segments. Encoding of this message

will require two consecutive uplink UF=20 or UF--21 messages with LAS
= 1 for the initial segment ard LAS = 5 for the second and final segment.

Should a longer CPDLC me:sage be required in the future, LAS encoding
will be as defined above.

Most uplink CPDLC messages require only a single segment, i.e., LAS =
O.

MA = Message, Cornm-A (56-bit subfield) The MA subfield is used to transport uplink Short Form

MSP Packet clata, which contains uplink CPDLC

application data. Encoding of Short Form MSP Packet
data is descr_ bed in Section 2.1.2.

AP = Address/Parity (24-bit subfield) Contains par:ty overlaid on the 24-bit ICAO address for

the aircrafL Occurs at end of all Mode-S uplink and

downlink messages (except DF=I 1).
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2.1.2 Format of Short Form MSP Packets (Uplink)

CPDLC application data is inserted into Short or Long Form MSP Packets. Since CPDLC messages used in the

LVLASO demonstration are relatively short they will always be in the form of Short Form MSP Packets. The

Short Form MSP Packet is partitioned and inserted into successive 56-bit MA subfields of UF=20 or UF=21

interrogations. The format of an uplink Short Form MSP Packet for the LVLASO demonstration is as follows:

Short Form MSP Packet Encoding (Uplink)

DP: 1 MP: I

DP = Data Packet type (l-bit subfield)

MP = MSP Packet type (l-bit subfield)

M/CH = MSP CHannel # (6-bit subfield)

Fill = Fill bits (0-bits)

UD = User Data (v-bit subfield)

Note I:

Note 2:

Always set to '0' for uplink messages in the LVLASO
demonstration.

Always set to '0' for the LVLASO demonstration

(indicates a Short Form MSP Packet).

Always set to '000110' for the CPDLC data link application in

the LVLASO demonstration (i.e., CPDLC uses MSP channel 6).

No fill bits are required for uplink CPDLC messages.

Application data for CPDLC uplink messages is inserted into this

field. The length of data is variable depending on the specific

uplink message. Since 6-bytes of application data are inserted at
a time into the MA subfield for each uplink interrogation (recaU

that the fast byte of the MA subfield is a control byte containing
DP:I, MP:I and M/CH:6), application data must be zero padded

to provide an integer multiple of 6-byte data blocks. The control

byte is always the fwst byte in the MA field for uplink messages
in the LVLASO demonswation.

Note: As currently defined, the Controller Interface transfers 6-

byte data segments (of a CPDLC message) at a time to the ATIDS

MWS [l]. The ATIDS MWS is then responsible for formatting
the collection of these segments into the proper sequence of Mode-

S uplink interrogations OJ'F=20 or UF=2 I).

In response to UF=20 or UF=21 uplink CPDLC interrogations, the airborne Mode-S transponder
wiU automatically acknowledge receipt of an interrogation with a downlink reply. This will be

referred to as a "transponder acknowledgment" or XPDR ACIC The ATIDS MWS must monitor

successful receipt ofXPDR ACKs to any of its CPDLC uplink messages. For a two segment UF=20

or UF=21 uplink message, the ATIDS MWS must verify that two XPDR ACKs were received that

confirm transponder reception of both segments (i.e., the entire message). Alternately, the ATIDS
MWS could report back to the Controller Interface the XPDR ACKs on a per segment basis, with

the Controller Interface assuming responsibility for monitoring whether messages were

acknowledged by the transponder.

Some CPDLC uplink messages require the pilot to respond with a dowulink CPDLC message. This

acknowledgment or response will be referred to as a PILOT ACK and should not be confused with a

XPDR ACK. PILOT ACKs occur at the application layer while XPDR ACKs occur at the physical /
data Link layer.

When the ADLP receives a dowulink message from the pilot (in response to a previous received

uplink message), the ADLP generates either an air-initiated or a multi-site directed dowulink CPDLC
message and transfers/t to the Mode-S wansponder for transmission. Downlink message protocols

associated with the ADLP/Mode-S transponder and the ATIDS M'WS are described in section 2.2.
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2.1.3 Encoding Examples of Uplink CPDLC Messages

This section provides two examples ofuplink CPDLC messages; one requiring only a single uplink

interrogation and a second example where two uplink interrogations are needed.

2.1.3.1 Single-Segment Uplink CPDLC Message Example

"Maintain Altitude" uplink message

Encoding of this message is as follows (per RTCA DO-219):

Preamble Message ID Element ID Altitude Choice Altitude Value Pad
00 001001 00010011 000 0010101 III00 00000000000000000

This application data encodes into: 09 13 05 78 00 00 in hexadecimal format. Note that the data is

zero-padded to 6 bytes. The Controller Interface provides this data

to the ATIDS MWS [I].

The 56-bit MA subfield thus encodes to: 06 09 13 05 78 00 00

where the leading byte is (DP = "0", MP = '0', and M/CH =
'0001 I0' or 06 H).

The full encoding of the 112-bit uplink interrogation is as foll,_ws:

UF:5 PC:3 RR:5 DI:3 SD:I6

IIS:4 MBS:2 MES:3 LOS:I RSS:2 Spare:l LAS:3
I0100 000 00000 001 1000 00 000 0 (J0 0 000

This encodes to: A0 01 80 00 06 09 13 05 78 00 00 (AP:24 must also be appended).

Note I: LAS = '000' indicates that this uplink CPDLC message is only a single segment message.

Note 2: This example assumed a UF=20, which also provides altitude data in the transponder reply.
UF=21 could also be used ff an identity reply is requested.

2.1.3.2 Two-Segment Uplink CPDLC Message Example

"Contact ATL Tower 119.5" uplink message

Encoding of application message is as follows (per RTCA DO-219):

Field Name

Preamble

Message ID

Element ID

ICAOunimame

MA:56

(already in hex)
(06 09 13 05 78 O0 00)

Value

)00'

'O00011'

'Olll OlOI"

'I0'

'I000001'

'lOIOIlO'

'I001100'

'0000000'

'010'

Comment

Arbitrarily selected value of message ID counter

Uplink message #117

ICAC facilitydesignation (2-bit flag)

ICACfacilitydesignation (1" character = A)

" (2 "_character = T)

" (3 '_ character = L)

" (4 _ character = 'null')

ICAC,facilityfunction ('Tower')
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Frequency

Pad

'0I' Frequency Choice = 'fzequencyvhf'

'00010011I000100' FrequencyValue =' 119.500MHz'

'00 0000 0000 0000 0000 0000 0000 0000' Applicationdataispadded withzerostofillan

integermultipleof6-bytesblocks,where each 6-

byteblockrepresentsa segment ina ShortForm

MSP Packet).

Concatenating these fields and converting them into hexadecimal format results in the following encoding:

03 75 A0 D4 98 01 22 71 00 00 00 00H Note: The appLicationmessage consistsof 12

bytesofdatawhich isprovidedby the
ControllerInterfacetotheATIDS MWS in

two separate 6-byte data transfers [1].

The 56-bit MA subfields encodes to: 06 03 75 A0 D4 98 01 (MA subfield for segment#I)

06 22 71 00 00 00 00 (MA subfield for segment #2)

where the leading byte in each segment is 06 H

(DP = '0', NIP = '0', and M/CH --- '0001 I0').

The full encoding of the two I 12-bit uplink interrogation required for uplink of"Contact ATL Tower
119.5" is as follows:

UF:5 PC:3 RR:5 DI:3 SD:16

IIS:4 MBS:2 MES:3 LOS:I RSS:2

10100 000 00000 001 1000 00 000 0 00

This encodes to: A0 01 80 01 06 03 75 A0 D4 98 01

MA:56

Spare:l LAS:3 (already in hex)

0 001 (06 03 75 A0 IM 98 01)

(AP:24 must also be appended).

Interrogation #2:

UF:5 PC:3 RR:5

I0100 000 00000

This encodes to:

DI:3 SD:16 MA:56

IIS:4 MBS:2 MES:3 LOS:I RSS:2 Spare:lLAS:3 (already in hex)

001 1000 00 000 0 00 0 101 (06 22 71 00 00 00 00)

A0 01 80 05 06 22 71 00 00 00 00 (AP:24 must also be appended).

Note 1: LAS = '001' for interrogation #1 indicates that this upLink CPDLC message is the first segment of
a series of linked segments. LAS = '101' for interrogation # 2 indicates that this is the second and

final segment of the series of linked messages.

Note 2: This example assumed a UF=20, which also provides altitude data in the transponder reply.
UF=21 could also be used if an identity reply is requested.
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2.2 Downlink CPDLC Messages - MSP Protocol

This section describes the MSP protocol used between the ADLP and the ATIDS MWS for downlink

CPDLC messages.

For the LVLASO demonstration, downlink CPDLC messages are actuated at the pilot interface and Flight
Test Computer and are transferred to the ADLP via the NASA I/O network using an ARINC 429 bus and

using a modified Williamsburg ARJNC 429 file transfer protocol. This protocol and the format of the data

file of the downlink message are described in section 3.2. Using the downlink data provided by the I/O

network, the ADLP uses the Mode-S Specific Protocol (MSP) to downlink CPDLC messages.

2.2.1 Overview of Mode-S Downlink (Comm-B) Messaging

Before descnbmg the specific message formats for downlink messages, it is useful to review the Mode-S

downlink (Comm-B) messaging protocol as it pertains to the LVLASO demonstration. Two types of

downlink transmissions are of particular interest for the LVLASO demonstration: 1) Downlink

transponder reply that is in response to an uplink CI'DLC message interrogation, thus providing a XPDR

ACK; 2) Downlink CPDLC message initiated by the pilot (either a request or status message, or a

reply/acknowledgment message that is in response to a previous uplink CPDLC message).

If the Mode-S transponder does not require dowrtlink transmission of a pilot-initiated CPDLC message at

the time an interrogation is received, the Mode-S transponder s_mply transmits a conventional surveillance

reply. However, ffa downlink CPDLC message needs to be transmitted, the Mode-S transponder includes

in the reply a notification to the ground interrogator (i.e., ATID3 MWS) that it has a downlink message
that needs to be transmitted.

Note: When the ADLP has a multi-segment downlink message to be transmitted, it transfers each segment

to the transponder, where the transponder then stores the f_rst 56-bit segment in the air-initiated register
(register 0) and stores the remaining segments in ground-initiated registers number 2, 3, and 4,

respectively. Once the complete message has been stored in these registers, the Mode-S transponder

provides a notification to the ground interrogator that a message is available for downlmk. It does this in

one of two ways:

1) "Air-initiated Comm-B" protocol

When transmitting a DF=I 1 (All-Call reply or squitter) or .'_DF=17 (extended squitter), the

transponder sets the CA (Capability) subfield to ' 111 ', whi:h indicates to the ground interrogator that
the transponder has a message waiting to be downlinked. Upon detecting the CA = 7 condition, the

ground station schedules a UF = 4, 5, 20 or 21 interrogation to the Mode-S transponder in order to

read the DR (Downlink Request) subfield in the DF = 4, 5, 20 or 21 transponder reply. DR indicates
the type of downlink message (if any) that is stored in the transponder for eventual downlink.

2) "Multi-site Directed Comm-B" protocol

Independent of whether or not the wausponder has set the CA subfield in previously sent DF=I 1 or

DF=I 7 squitters, the Mode-S transponder also informs the ground interrogator of a Comm-B request

by setting the DR subfield in DF = 4, 5, 20, or 21 replies to "00001' or '00011', which indicate a
'request to send Comm-B message'.

Note: DR = '00011' also indicates that TCAS information is available. However, since the Mode=S

aircraft installation will be independent of TCAS for the LX_LASO demonstration, this DR code will
notoccur.
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Upon detecting a DR = '00001' or '0001 I' in the transponder reply, the ground interrogator sends a UF = 4,

5, 20 or 21 interrogation with RR = ' 1 0000' and DI = '001' to extract the fhst segment of the Comm-B

downlink message (which is stored in the air-initiated register in the transponder). DI = '001' provides the

transponder with multi-site information (i.e., the Interrogator Identifier Subfield, HS, which is located in the

SD subfield). The transponder includes the fLrSt segment of the dowulink message stored in the air-initiated

register in the MB:56 subfield of the corresponding DF=20 (if UF=4 or 20) or DF=21 (ifUF=5 or 21) reply.

The transponder continues to set the DR subfield to '00001' or '0001 I' until the interrogator closes out the
downlink message.

Contained in the MB subfield in the initial downlink segment is the two-bit LBS (Linked Comm-B) subfield

which indicates the length of the stored downlink message to be retrieved, i.e., message length ranges firom
l to 4 segments. The ground interrogator uses this information to schedule the appropriate number of

additional interrogations. Encoding of the MB and LBS subfields is discussed in section 2.2.3 below.

Interrogations that solicit additional message segments for downlink consist of UF=4, S, 20 or 21

interrogations with RR set to ' I 0000', DI set to ' I 11' and RRS set to '0010', "0011 ', or '0100'. D I=' 111'

indicates that the SD subfield in the interrogation contains an extended data readout request of one of the

255 Mode-S data registers. The address of the extended data readout request consists of the 8-bit Comm-B

Definition Subfield, i.e., the BDS address. The RRS subfield, contained within the SD subfield, represents

the lower four bits of the BDS address, i.e. BDS2. The BDS1 address (upper four bits of BDS) is contained
within the lower four bits of the RR subfield when the leading bit in RR =" 1 '. Thus RR=' I 0000' (also

DI =' 111') and RRS='0010', '0011 ', and '0100' represent BDS registers 2, 3 and 4, respectively.

Once all downlink message segments have been received, the ground interrogator closes out the downlink

message by sending a UF=4, 5, 20 or 21 with the PC (Protocol) subfield set to "100' (cancel Comm-B),

RR--'00000' and DI='001'. Alternately, the interrogator could set PC = '000' (no changes in transponder

state), RR = '00000', DI = '00i' (indicating that SD subfield contains multi-site information), with SD
encoded as follows:

IIS -- '1000' (ATIDS interrogator ID), MBS = '10' (Comm-B Closeout), MES = '000', LOS -- '0'

(no lockout of All Calls), RSS -- '00", and TMS/LAS --- '0000'.

Notel: At this time, all of the CPDLC downlink messages that will be used in the LVLAS0

demonstration are sufficiently short to fit into a single dowulink message segment.

Note 2: Several references have been made regarding the encoding of the SD subfield in uplink

interrogations. SD is encoded in one of two ways, depending on whether DI='001' or' 111". SD

encoding is summarized as follows:

SD:16 for DI='O01'

SD Subfield Encoding

{ MES:3 [ gOS:l RSS:2 TMS:4IIS:4 ] MBS:2

$l_;16 for DI='I II'
i

SD SubfieldEncoding

IIS:4 RRS:4 Spare:l l LOS:I _ Spare:2 TMS:4

Section 2. I. 1 discussed the encoding of SD (with DI='001') for typical interrogations. For the
LVLASO demonstration, IIS is always set to '1000' for ATIDS; MBS--'00' in all cases except

"10' for a Comm-B Closeout; MES, LOS and RRS are always set to "00', "0' and '00',

respectively. TMS encoding is as descn'bed in Section 2.1.1.
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For DI =' 111 ', SD encoding always uses HS =' 1000' and LOS='0 '. RRS represents the lower 4
bits of the BDS address of the Mode-S registers. TM:; encoding is defined in Section 2.1.1.

Specific formats for the downlink messages (replies) issued by the Mode-S transponder are described in the
next section.

2.2.2 Format of Downlink CPDLC Mode-S Messages (Replies)

The Mode-S transponder uses a DF=4 or 5 (short 56-bit reply) or DF=20 or 21 (long 112-bit reply) in

response to uplink CPDLC interrogations. The message format of the DF=4 or 5 and DF=20 or 21 Mode-S

replies are as follows:

DF:5 FS:3 DR:5 UM:6 ID:13 (for DF--5,21)

DF = Dow_li_ Format (5-bit subfield);

MB:0 (for DF--4,5) or
MB:56 (for DF=20,21) I AP:24 I

DF=4 replies are used for XPDR ACK_ to UF=20 (and UF=4)

interrogations (Le., when RR subfield = '0xxxx').

Alternately, DF=5 replies are Used for XPDR ACKs to UF=21

(and UF=5) interrogations (also when RR subfield = '0xxxx').

DF=20 or 21 are Used in response to UF = 4, 20 or 5, 21,

respectively, when the ground interrogator sets the RR

subfield to '10000', requesting downlink of a CPDLC

message segment in the MB:56 subfield. Note that the DF =

20 or 21 reply implicitly also provides a XPDR ACK. DF
coding is '00100', '00101', ' 10100' and ' 10101" for DF =

4, 5, 20, and 21, respectively.

FS = Flight Status (3-bit subfield);

DR = Downlink Request (5-bit subfield);

UM = Utility Message (6-bit subfield)

FS coding is as follows:

Code Aler'_: SPI Airborne on the _ound

0 no no yes no
1 no no no yes

2 yes no yes no
3 yes no no yes

4 yes yes either
5 no yes either

6,7 not assigned

Set to '00006' when Mode-S transponder has no downlink
CPDLC mes:_ages that require transmission. Thus the reply

is simply a XPDR ACK to an interrogation.

When the Mode-S transponder requires a downlink
transmission ofa CPDLC message, it sets DR = '00001" or

"0001 l', whi:h is a 'request to send a Comm-B message'.

UM encodinl; is as follows:

UM Subfield Encoding

IDS:2 [ HS4

IDS (Identifier Designator Subfield_

0 = No information available

I = Comm-B reservation active
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2=Comm-Creservation active

3 = Comm-D reservation active.

Due to the multi-site nature of Mode-S communications at Atlanta (i.e.,

separate ATIDS and Atlanta SSR interrogators), IDS will be set to '01' in

any reply where ATIDS is requesting downlink ofa CPDLC message..

Note:

AC = Altitude Code (13-bit subfield);

ID = Identification (I 3-bit subfield);

MB -- Message, Comm-B (56-bit subfield)

AP = Address/Parity (24-bit subfield)

IIS (Interrogator Identifier Subfield)

For LVLASO demonstration the ATIDS IriS = '1000'.

IIS for Atlanta's Secondary Surveillance Radar interrogator is '0110'.

Stores aircraft altitude information for DF--4 or DF=20

replies.

Stores aircraft ID (4096 code) in DF = 5 or DF = 21 replies.

MB is not used for DF = 4 or DF = 5 replies.

In the LVLASO demonstration, DF = 20 or DF = 21

replies use the MB subfield to transport Short Form MSP

Packet data, which contain downlink CPDLC application

data. Encoding of the MB subfield and the downlink
Short Form MSP Packet is descn_oed in Section 2.2.3.

Contains parity overlaid on the 24-bit ICAO address for

the aircraft. Occurs at end ofaU Mode-S uplink and
downlink messages (except DF--I 1).

2.2.3 Formatof MB Subfield and Short Form MSP Packets (downlink)

Encoding of the MB subfield ofDF = 20 or DF = 21 replies is as follows:

The first two bits in the initial MB subfield segment of a linked Comm-B downlink CPDLC message

consist of the LBS subfield (Linked Comm-B Subfield). LBS coding is as follows:

LBS Meaning

0 Single segment downlink message

1 initial segment of a two-segment message

2 initial segment of a three-segment message
3 initial segment of a four-segement message.

The LBS subfield indicates to the ground interrogator the length of the pending CPDLC downlink message

in terms of its number of segments that must be solicited via ground interrogations. The remaining 54 bits

available in the initial MB subfield are used to store application data that is stored in the format of a Short
Form MSP Packet (described below). Subsequent MB subfields of linked Comm-B messages allow all 56

bits to be used for Short Form MSP Packet application data.

The format of the Short Form MSP Packet for downlink CPDLC messages is identical to that used for
uplink CPDLC messages with the exception of the Fill bit subfield; Fill:0 is used for uplink messages while

Fill:6 is used for downlink messages, i.e., downlink messages have 6 fill bits which are set to zero.

Short Form MSP Packet Encoding (Downl_)

DP:I MP:I I M/CH:6 FiU:6 I UD:v

DP = Data Packet Type (1-bit subfield); Always set to '0' for downlink messages in LVLASO
demonstration.
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MP = MSP Packet Type (l-bit subfield);

M/CH = MSP CHannel number (6-bit subfield)

Fill = Fill bits (6-bit subfield)

UD = User Data (v-bit subfield)

Always set to '0' for LVLASO demonstration (indicates a

Short Form MSP Packet).

Always set to '0001 I0' for CPDLC message application in

LVLASO demonstration (i.e., CPDLC uses MSP channel 6).

6 fill bits are required for downlink CPDLC messages in
LVLASO demonstration. Fill bits are set to zero.

Application data for CPDLC downlink messages is

inserted into this field. The length of data is variable

depending on the specific downlink message.

2.2.4 Encoding Example of a Downlink CPDLC Message

This section provides an example encoding of a downlink CPDLC message and the associated Mode-S

protocols. The sample message is the "Descending to 4500 ft" downlink message.

Encoding of this message is as follows (per RTCA DO-219):

Preamble Message ID Element I]3 Altitude Choice
00 000101 000111 I0 000

Altitude Value Pad

000111000010 0

This application data encodes into: 05 IE 03 84 in hexadecimal format. This is the CPDLC

application data sent Jtom the NASA FO network to the ADLP.

Note that the data is zero padded by the Flight Test Computer to

fill any spare bits in the ARINC 429 data file (to the nearest
ARINC 429 data word). For this example, a single '0' pad bit is

required. Section 3.2 further discusses the interface protocols
between the NASA I/O network and the ADLP.

Upon receiving the downlink CPDLC message from the NASA FO network, the ADLP formats the
downlink message into the appropriate set of message segments using the Short Form MSP Packet format.

The resulting message encoding is as follows:

LBS:2 DP:I MP:I M/CH:6 FILL:6 UD:v

00 0 0 000110 000000 05 1E 03 84 00

which encodes into the following hexadecimal format that is inserted into the 56-bit MB subfield:

01 08 05 1E 03 84 00

(Note that the ADLP adds additional zero padding to the message to fill the 56-bit MB subfield).
The full encoding of the 112-bit downlink CPDLC message is as follows:

DF:5 FS:3 DR:5 UM:6 AC:I3 orII):13 MB:56 (already inhex) (AP:24)
1010x xxx 0001x 01 1000 xxxxxxxxx,v.xxx 01 08 05 IE 03 84 00 AP:24
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2.2.5 Mode-S Interrogation / Reply Scenarios for the LVLASO Demonstration

The following exchanges between the ground interrogator (ATIDS) and the airborne Mode-S transponder /

ADLP should be expected in the LVLASO demonstration. Compatibility with the Atlanta SSR

interrogator in terms of the Interrogator ID Subfield (IIS) must be ensured.

I) ATIDS may send an All-Call Interrogation, i.e., UF = I I.

The Mode-S transponder replies with a DF = 1I. Ira downlink CPDLC message has been received by

the ADLP / Mode-S transponder, the transponder sets the CA subfield = 7 (i.e., ' I l I '), indicating that
a message is available for downlink.

2) ATIDS sends a UF = 4, 5, 20 or 21 surveillance interrogation. UF = 4 or 5 are used for surveillance

interrogations only. UF = 20 or 21 are used ffan uplink CPDLC message is included in the

surveillance interrogation. For UF = 20 or 21, RR = '00000', DI = '001' (indicating that the SD

subfield contains multi-site information, MA contains the uplink CPDLC message using the Short
Form MSP Packet, with SD encoded as follows:

IIS = 'I000' (ATIDS interrogator ID), MBS = '00' (no Comm-B action), IVIES = '000', LOS = "0'

(no lockout of All Calls), RSS = '00', and TMS/LAS = '0000' (single segment message) or

'000 I' (first segment of two message segments), '0101' (second of two message segments).

The Mode-S transponder replies with a typical DF = 4 or 5 surveillance reply. If an uplink CPDLC

message was included, the ADLP processes the message and transfers the complete message to the

NASA I/O network once all segments are received. In the event a downlink CPDLC message has been

received by the ADLP / Mode-S transponder from the I/O network, the transponder sets the DR

subfield = '00001' or "0001 I', indicating a request for a downlink (Comm-B) message to the ground
interrogator. If no downlink request is needed, DR is set to '00000'.

3) DF = 11 or DF =17 squirters.

The Mode-S transponder will transmit occasional squitter messages. If a downlink CPDLC message

needs to be transmitted, the transponder sets CA = 7 ('111 '). The DF = 17 squirter also provides ADS-

B position reports for ADS-B surveillance by ATIDS.

When ATIDS receives an indication of an air-initiated Comm-B (CA = 7 in a DF=I I or 17) or a multi-site

directed Comm-B request (DR = '00001' or '0001 I' in a DF = 4, 5, 20 or 21 reply) ATIDS schedules a UF

= 4, 5, 20 or 21 with the RR subfield set to' I 0000', and the DI subfield = '001', which requests the

transponder to downlink the initial segment of the CPDLC message in the reply.

The Mode-S transponder, upon receiving the UF = 4, 5, 20 or 21 interrogation replies with a DF = 20 or 21

with DR = "00001 ', IDS (in UM subfield) -- '01' and IIS (in UM subfield) = ' I000' (which is the ATIDS

Interrogator ID). The MB subfield contains the LBS subfield and the Short Form MSP Packet data stored

in air-initiated Comm-B register (register 0). LBS = '00' indicates a single downlink message segment.

ATIDS upon receiving the downlink CPDLC message, closes out the downlink message by sending a UF --

4, 5, 20 or 21 with the PC subfield = 'I00' (cancel Comm-B), RR = '00000' and DI = '000'. Alternately, the

interrogator could set PC = '000' (no changes in transponder state), RR -- "00000", DI = '001' (indicating that
SD subfield contains multi-site information), with SD encoded as follows:

IIS = '1000' (ATIDS interrogator ID), MBS = 'I0' (Comm-B Closeout), MES = '000', LOS = '0' (no
lockout of All Calls), RSS = '00', and TMS/LAS = '0000'.

Note: Recall that LVLASO downlink messages are only one segment long.
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3.0 Mode-S ADLP - I/0 Network Interface

Tl_ssection describesthe interface between the Airborne Data Link Processor (ADLP) and the end user

CPDLC application located in the Flight Test Computer (via the FO Network). This interface is denoted as

Interface 'D' in Figure 1. The physical interface consists of dedicated uplink and downlink AR/NC 429

buses configured in the high-speed mode (100 K/-Iz). The data link layer uses a modified Williamsburg
AR/NC 429 file transfer protocol to uplink and downlink CPDLC messages. The following sections

discuss the uplink and downlink ARINC 429 fde transfer protocols, respectively.

3.1 Uplink CPDLC Message Transfer (ADLP to I/O Network)

Upon successfully decoding an uplink CPDLC message, the ADLP builds a message file that is transferred to
the I/O Network using ARINC 429 fde transfer protocols. Section 3.1.1 descn'bes the AR/NC file transfer

protocol. Section 3.1.2 describes the encoding of file data. Section 3.1.3 provides an uplink file transfer

example.

3.1.1 ARINC 429 File Transfer Protocol

The ARINC f'de Wansfer protocol is as follows: The ADLP transmits a Request-To-Send (RTS) AXINC 429

protocol word to prepare the I/O Network for a fde transfer. This is followed by a Start of Transmission

(STX) word and subsequently by a number of ARINC 429 D_ta Words. The file transfer concludes with an
End-of-Transmission (EOT) word. Specific formats are described below:

RTS Protocol Word

3231 30292827262524232221 20 19 18 17 16 15 14 13 12 11 109 87654321

P 1 0 0 0 0 0 1 ( Destination Code )( Word Count )( SAL )

SOT Protocol Word

32 313029282726252423 222120 19 18 17 16 15 14 13 12 II 109 87 65432 1

P I I 0 ( GFI ) (File Sequence Number) ( LDU Sequence No. ) ( SAL )

3231302928272625242322212019181716151413 1211 1098 7654321

P 0 0 0 (LoByte3)( Byte2 )( Bytel )( SAL )

EstRDma.=W=o_O__

3231 3029282726252423222120 19 18 17 16 15 14 13 12 II 109876543 2 1

P 0 0 0 ( Byte5 )( Byte4 )(Hi Byte 3)( SAL )

Partial Data Word #3

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 1514131211 10987654321

P 0 0 1 1 0 ! 1 ( Byte7 )( Byte6 )( SAL )

EOT Protocol Word

323130292827262524232221 201918171_ 15 14 13 12 11 10987654321

P I I I 0 0 0 x ( Checks ma )( SAL )
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The contents of the fields are defined as follows:

I) Dest/nation Code Destination code for the UO Network = '0100101 I'.

2) Word Count Represents the number of ARINC 429 Words to be transferred

following the RTS protocol word.
Word Count = STX + # of Data Words + EOT.

For the example above the word count = 5.

3) GFI General Format Identifier.

GFI = '001 I' indicating use of general purpose bit=oriented protocol

4) File Sequence Number This number is 0 for the f_t file sent and is incremented (modulo FF)
each time a new f'de is sent.

5) LDU Sequence Number Set to '00000000'. Not used in protocol.

6) SAL System Address Label.

The SAL for the I/O Network = '104' octal = "00100010" binary
(bit 8 - bit 1)

7) Checksum Cyclic Redundancy Check of Data Words only in file, not including
the label or parity bit.

8) Partial Data Word Encoding (as a function of remaining data nibbles).

Note: Unused data nibbles are zero padded.

32 31 30 29 28 27 2625 24 23 22 21 20 19 18 17 161514131211 10987654321

P 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (N_blel)( SAL )

P 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 (Nibble2)(N_blel)( SAL )

P 0 0 1 1 0 1 0 0 0 0 0 (Nibble3)(Nibble2)(Nibblel)( SAL )

P 0 0 1 1 0 1 1 (Nibble4)(Nibble3)(Nibble2)(Nibblel)( SAL ).

3.1.2 Encoding of ARINC 429 File Data (uplink)

No specialcontrolinformationisincludedinan uplinkdatafile.The dataconsistssolelyofD0-219

applicationmessages asdefinedin[2].RecallthatCPDLC applicationdataiszeropadded tointeger

multiplesof6 bytessinceeach Modc-S uplinkmessage islimitedto48 bitsofCPDLC uplinkdataata

time.This zeropadding isperformedby theControllerInterface.(Forexample: A 4 bytemessage

requires2 bytesofzeropadding;a 9 bytemessage requires3 bytesofzeropaddingand istransmitted

usingtwo UF=20 interrogations).

3.1.3 Uplink CPDLC Message Examples

Section 2.1.3 provided two examples of uplink CPDLC messages as they were obtained from the

Controller Interface in the form of application data and were then converted to the proper Mode-S uplink

interrogations. This sections uses the same two examples to descn'be the file transfer from the ADLP to the
NASA I/O Network.
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3.1.3.1 Example of a "Maintain Altitude" Uplink CPDLC Message

From section 2.1.3.1 the uplink interrogation received by the Mode-S/ADLP for a "Maintain Altitude"

message is:

A0 01 80 00 06 09 13 05 78 00 00 (and the AP:24parity/address field).

Upon receiving this message the Mode-S transponder transmits the appropriate XPDR ACK reply to the
ATIDS MWS and forwards the uplink message to the ADLP. The ADLP recognizes this as a MSP

protocol message using MSP channel = 6 indicating that this is a CPDLC message. The ADLP then
formats the received CPDLC application data into an ARINC 429 data file using the modified

Williamsburg AR/NC 429 file transfer protocol.

The data transferred by the ADLP is as follows:
13 06 09 13 05 78 00 00

Note: The MSP_Type code '13' is only included once at the beginning and the ChanneLID '06' is
inserted for each uplink interrogation, i.e., it will occur every 7_ byte prior to the actual data). In this

example only one interrogation is received and thus only channeLID (06) occurs only once.

The subsequent ARINC 429 file transfer from the ADLP to the I/O Network is as follows (using

hexadecimal representation):

32 1

41 4B 05 22

63 EA 00 22

0 9 06 13 22

005 13 022

0 0 00 78 22

18 000022

71 57BB 22

ARINC word bit locations

RTS Protocol Word (with word count = 6, SAL = 22 H (label 104))

S'IX Protocol Word (GFI = 3, file sequence number arbitrarily selected as

EA, LDU sequence number = 00)

Full Data Word #1 (byte 1 = 13, byte 2 = 06, low byte 3 = 9)

Full Data Word #2 (hi byte 3 "--0, byte 4 = 13, byte 5 = 05)

Full Data Word #3 (byte 6 = 78, byte 7 = 00, low byte 8 = 0)

Partial Data Word #4 (hi byte 8 -- 0)

EOT Protocol Word (checkstu n = 57BB)

3.1.3.2 Example of a "Contact ATL Tower 1 19.5" Uplink CPDLC Message

From section 2.1.3.2 two uplink interrogations are required te transmit the "Contact ATL Tower 119.5"

message. The uplink interrogations received by the Mode-S/A.DLP are:

Interrogation # 1:

Interrogation #2:

A0 01 80 01 06 03 75 A0 D4 98 01 (AP:24 must also be appended).

A0 01 80 05 06 22 71 00 00 00 00 (AP:24 must also be appended).

Upon receiving each of these messages, the Mode-S transpon ier transmits the appropriate XPDR ACKs

replies to the ATIDS MWS and forwards the uplink message _egments to the ADLP. The ADLP
recognizes these uplinks as MSP protocol CPDLC message segments (MSP channel = 6). The ADLP then

rebuilds the application message and formats it into an AR/NC 429 data file.

The data transferred by the ADLP is as follows:

13 06 03 75 AOD4 98 01 06 22 71 00 00 00 00

Note: The MSP_Type code ' 13' is only included once at the aeginning and the ChanneLID '06' is
inserted for each uplink interrogation, i.e., it will occur every 7_ byte prior to the actual data):
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The subsequent AR.INC 429 file transfer from the ADLP to the I/O Network is as follows (using
hexadecimal representation):

32 1

41 4B 08 22

63 EA 00 22

0 3 06 13 22

0 A0 75 0 22

0 1 98 D4 22

0 22 06 0 22

0 0 00 71 22

0 00 00 0 22

71 B508 22

ARINC word bit locations

RTS Protocol Word (with word count -- 8, SAL = 22 H (label 104))

STX Protocol Word (GFI = 3, file sequence number arbitrarily selected as

EA, LDU sequence number = 00)

Full Data Word #1 (byte 1 = 13, byte 2 = 06, low byte 3 = 3)
Full Data Word #2 (hi byte 3 = 0, byte 4 = 75, byte 5 = A0)

Full Data Word #3 (byte 6 = D4, byte 7 = 98, lo byte 8 = I)

Full Data Word #4 (hi byte 8 = 0, byte 9 = 06, byte 10 = 22)

Full Data Word #5 (byte 11 = 7I, byte 12 = 00, 1obyte 13 = 0)

Full Data Word #6 (hi byte 13 = 0, byte 14 = 00, byte 15 = 00)

EOT Protocol Word (checksum = B508)

3.2 Downlink CPDLC Message Transfer (1/O Network to ADLP)

Upon receiving a downlink CPDLC message from the pilot interface, the Flight Test Computer builds a

message file that is transferred via the I/O Network to the ADLP using ARINC 429 file transfer protocols.

Section 3.2.1 describes the ARINC file transfer protocol. Section 3.2.2 describes the encoding of file data for

downlink CPDLC message transfers. Section 3.2.3 provides an example of a downlink file transfer.

3.2.1 ARINC 429 File Transfer Protocol

The ARINC file transfer protocol for down/ink CPDLC messages is the same as for uplink message transfers.

The Flight Test Computer Wansmits a Request-To-Send (RTS) ARINC 429 protocol word via the I/O Network

to prepare the ADLP for a file transfer. This is followed by a Start of Transmission (STX) word and
subsequently by a number of ARINC 429 Data Words. The file transfer concludes with an End-of-

Transmission (EOT) word. Specific formats are described in section 3.1.1.

3.2.2 Encoding of ARINC 429 File Data (downlink)

Unlike the uplink file transfer of a CPDLC message, the downlink CPDLC datafile does include some
additional control data that precedes the CPDLC application data. The Flight Test Computer (via the FO

Network) includes the following control fields prior to the application data:

MSP_Type

Channel ID

DataLength

represents a 1-byte value encoded as a hexadecimal 13H or '0001 0011'

a 1-byte MSP channel ID encoded as a hexadecimal 06H or '0000 0110'

a 1-byte field that indicates the length of the application data in bytes.

This control dataisfollowed by the application datathat consists of the D0-219 encoding of downlink

CPDLC messages that are listed in [1,2]. CPDLC application data is zero padded to fill the spare bits of

any partially filled AR.INC 429 data words. This zero padding is performed by the Flight Test Computer.
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3.2.3 Downlink CPDLC Message Example

Section 2.2.4 provided an example ofa downlink CPDLC message as it was received by the ADLP (from
the I/O Network) and subsequently converted to the proper Mode-S downlink reply. This sections uses the

same example to describe the file transfer from the NASA I/O Network to the ADLP. The example is a

"Descending to 4500 ft" downlink CPDLC message.

The ARINC 429 file transfer from the FO Network to the ADLP is as follows (using hexadecimal

representation):

32 " I

41 00 05 A2

63 02 00 A2

0406 13A2

0 IE 05 0A2

1B 8403 A2

71 6A66 A2

Thus the data transferred is:

[1]

[2]

[3]

ARINC word bit locations

RTS Protocol Word (with word count = 5, SAL = A2 H (label 105))

STX Protocol Word (GFI = 3, fde sequence number arbitxarily selected as

02, LDU sequence number = 00)

Full Data Word #1 (byte 1 = 13, byte 2 = 06, low byte 3 -- 4)

Full Data Word #2 (hi byte 3 ----0, byte 4 = 05, byte 5 = 1E)

Partial Data Word #3 (byte 6 ---03, byte 7 = 84)

EOT Protocol Word (checksmn = 6A66)

13 06 04 05 1E 03 84, where 13, 06, and 04 represent control data

(message type, MSP channel, and message length, respectively).

05 1E 03 84 represents the application data of the CPDLC message.

'Controller Interface to ATIDS - Interface Control Dccument (Rev. 1.2)", Jim Rankin, St. Cloud

St. University, Dec. 4, 1996.

"Controller-Pilot Data Link Communications (CPDLC) Messages (Rev. 4)", Jim Rankin, St. Cloud

St. University, Nov. 22, 1996.

"Minimum Operational Performance Standards for the Mode-S Airborne Data Link Processor",

RTCA DO-203, June 21, 1993.
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Appendix D

1. VHF Data Link Approaches

This section examines each of the V'DL approaches being considered by industry: 1) transition of

VDL Mode 1 to VDL Modes 2 and 3, and 2) VDL Mode 4. Since each of these approaches

provides a compatible sub-network interface to the overall ATN, it is only necessary to discuss

the lower sub-network layers for each of these approaches. Capabilities and potential

shortcomings of the sub-network "lower layers" for these approaches are identified in terms of

meeting the data link application requirements discussed in the Section 3.3 of Volume I. Where

applicable, VHF Specific Service (VSS) are identified that bypass the ATN to provide local, low-
latency communication services.

Discussion of this section allows data link applications to be allocated to respective data links
(Section 3.4 of Volume I).

2. VHF Data Link Sub-Network Layers

The aeronautical data link architecture utilizes a number of sub-networks (e.g., I-IF, VI-IF, SATCOM,

and Mode-S) that are combined into the ATN using the 7-1ayer OSI stack. For all of these sub-

networks, a common interface is developed at the sub-network layer using the ISO-8208 protocol.

Figure D-1 illustrates the V'I-IF data link sub-network architecture. The upper layers, which are
common to all aeronautical data link communications are not shown and are not discussed here.

From Figure D-l, three distinct layers of the OSI model are indicated; the physical layer, data

link layer, and network layer. The network layer is shown in more detail consisting of three
sublayers, 1) the lower portion of the network layer is the ISO-8208 protocol that is common to

all ATN data link, 2) the portion of the network layer that is dependent on the type of sub-

network layer (in this case the ISO-8208), also called the sub-network dependent convergence

facility (SNDCF), and 3) the sub-network interface to the internetwork router, which is
independent of the type of sub-network.

:i!!

Figure D-1 VE[F Data Link Sub-Network Architecture
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InFigure D-1 the ground and aircraft ATN routers connect to the various aeronautical data link

end-user applications via the upper layers (not shown). Data link messages from ground

applications from the ATN are sent through the OSI layer to the ground network interface (GNI),
which then uses the VHF sub-network to uplink the application message to the aircraft network

interface (ANI) via the VHF radio frequency link, i.e., the physical layer. Once received by the

aircraft, the message is sent to the aircraft ATN router, which then sends the message upward

through the OSI stack to the end-user application. The purpose of each of the layers of the VDL

sub-network, as illustrated in Figure D-2, is briefly described in the next paragraphs.

,--. ,-- ,-- Layer 3

MAC (CSMA) I
AMSK-AM 12.4 kB/,)I

v_J OP_ I_ S4J]PP.A_

. ° .

MAC (CSMA)

DSPSK (31.5 kBIs)

VDI,_M O__DE2S &B Pj.

Layer 2

Layer 1

Figure D-2 VDL Sub-Network La_ ers (VDL Mode 1 and 2)

2.1 Physical Layer

The role of the physical layer in the ATN is to provides the radio frequency (P.F) signal-in-space

to transmit and receive data link messages physically between ground and airborne radios. For

Figure D-2, the physical layer for VDL Mode 1 is 2,400 bps AMSK sent via the AM VI-I:F

Comm transceiver. VDL Mode 2 is also shown which t_ses 31.5 kbps D8PSK. VDL modulation

waveform candidates and performance considerations a:-e discussed later in Section 3.

In addition to providing the RF signal-in-space connecti on, the physical layer also provides

transceiver frequency control and provides a notification service to the lower layer of the data

link layer (i.e., the MAC layer) regarding channel acces_ and status on received messages.

2.2 Data Link Layer

The data link layer as shown in Figure D-2 is split into two sublayers, the media access control
(MAC) and data link service (DLS) sublayers, and also :ontains the a management function

referred to as the Link Management Entity (LME).

The MAC sublayer provides access to the physical layer using channel access protocols. For

V'DL Modes 1 and 2, the channel access protocol is Carder Sense Multiple Access (CSMA).

VDL Modes 3 and 4 both use forms of Time Division Multiple Access (TDMA), although the
actual time slot structure is different for each mode.

CSMA is a simple channel access protocol but has a relatively low channel access efficiency on

the order of-18 %. TDMA provides as high as 80 % tc 100 % channel access, but is more

complex due to the need for precise slot timing among zll users.
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TheDLSsublayeriscomposedoftheAviationVHFLinkControl(AVLC)derivedfromthe
HighLevelDataLinkControl(HDLC)protocol(ISO3309).TheDLSfunctionsareframe
exchanges,flameprocessinganderrordetection.TheLMEisresponsibleforlink establishment
betweenpeerDLSentities.

2.3 Network Layer

The lowest layer of the network layer (Figure D-2) is the sub-network access protocol (SNAcP)

layer, which uses the ISO 8208 protocol. It provides packet exchanges over a virtual circuit,

error recovery, connection flow control, packet fragmentation, and subnetwork connection

management functions. The intemetwork sublayer provides the conversion from the IS0 8208

sublayer using the sub-network dependent convergence facility (SNDCF) and provides the

interface to the transport layer.
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3. VDL Physical Layer - Modulation Waveform Candidates

Signal Waveform Selection Issues for Aeronautical VHF Data Link

Selection of the appropriate data link modulation waveform is dependent upon the fundamental

constraints of transmit power, available spectrum bandwidth and the desired data link capacity

(signalling rate) in providing an accepted level of quality 3f service (bit error rate). Other factors

that influence the design of the modulation waveform are performance of the data link in the

presence of channel impairments such as noise, fading and interference. Cost of providing the

needed data link capability/technology is of course also a factor.

Given the constraints of current VHF Comm channel spacing and transmit power (25 KI-Iz and

20 Watts, respectively) and the desire to provide as much channel capacity as possible, the

following observations are made:

1) 20 Watts of transmit power is more than enough to provide for reliable line-of-sight

communications, i.e., sufficient Eb/N o and S/N can be provided in the presence of expected

path losses and attainable receiver noise figures.

2) Available data link capacity is constrained by the available (25 KHz) bandwidth of VHF
channels.

Since data link capacity is expected to be at a premium for future CNS/ATM data link, the

aeronautical VHF data link channel is "bandwidth-limited" rather than "power-limited".

Since we have a "bandwidth-limited" communication channel it is expected that the most

effective signaling waveform will be from the family of spectrally-efficient, m-ary Phase-Shift-

Keying (PSK) modulations. These waveforms provide a aigh bits-per-second (bps) per unit

bandwidth (I/z) data rate capability. This high bps//-/z comes at the expense of requiring

additional signal power, which is readily available in the V'HF band. Conversely, it would be

expected that m-ary Frequency-Shift-Keying (FSK) modl_lation for large values of m are

unsuitable since they are intended primarily for power-liraited channels and are spectmlly

inefficient, i.e., provide low bps/Hz ratios. Thus it is not surprising that D8PSK and GMSK were

selected by the industry as suitable candidate waveforms

3.1 DSPSK Modulation

31.5 kbps D8PSK was selected to provide high data rate lbr future CNS/ATM data link and to

provide the capability of four digital voice subchannels fi,r VDL Mode 3.

In order to achieve the high data rate of 31.5 kbps within the available 25 KHz channel, PSK

modulation using an 8-ary signal constellation was required. Raised-cosine filtering of the signal

waveform provides low sidelobes of the channel spectrura to mitigate effects of adjacent channel

interference. Figure D-3 shows spectra of the D8PSK wz reform as a function of the length of

the raised cosine filter [5]. For a duration oft = +/- 2.5 s_.mabol periods or longer, sidelobe levels

approach -70 dB at 25 KHz from the center of the channc I (this occurs at FT= -2.4, where F is

the frequency offset and T is symbol period of 1/10,500., ymbols/sec).

Differential signalling was selected in order to a) increase the robustness of the signal to the ill

effects of multipath fading, b) maintain the efficiency of the signal waveform by minimizing the

length of preambles and training sequences that would otherwise be needed when using coherent

detection, and c) to simplify the design of the demodulat_,r.
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While having a relatively constant envelope, the D8PSK waveform requires that a linear power

amplifier be employed to maintain low sidelobe levels provided by the raised cosine filter.

In order to achieve a bit error rate (BER) of 10 -3, the spectrally efficient data communications

provided by D8PSK (i.e., 31.5 kbps/25 KHz = 1.26 bps/Hz) requires an Eb/No of 12.9 dB.
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Figure D-3 D8PSK Power Spectra (with Nyquist Truncation)

3.2 GMSK / GFSK Modulation

In addressing future CNS/ATM data link applications such as ADS-B, ATC two-way data link,

and GNSS corrections data link, Sweden has developed a data link modulation based on the

Gaussian Minimum Shift Keying (GMSK)/Frequency Shift Keying (GFSK) waveform. As

indicated previously, initial work focused on GMSK modulation using a 9600 bps data rate over

a 25 KHz channel bandwidth. This was upgraded to 19.2 kbps for increased data link capacity.

The waveform is intended to support the VDL Mode 4 data link. VDL Mode 4 is discussed in

Section 4.3.3).

The GMSK waveform has a number of desirable features:

1) GMSK is a spectrally-efficient, robust modulation, providing low sidelobe levels needed for

mitigating adjacent channel interference. Low sidelobe levels are attained versus pure MSK

modulation by using a Gaussian pre-filter in the modulation process. Figure D-4 shows

power spectra of GMSK as a function of BbT, where B b is the pre-filter bandwidth, and T is

the signaling period [6]. For 9600 bps in a 25 KHz channel the normalized frequency ((f-

fc)/T) = 2.6 and sidelobe levels drop offrapidly for BbT of 0.7 or tess. For 19200 bps in a

25 KHz channel the normalized frequency ((f- fc)/T) = 2.6 and a BbT of 0.16 to 0.2 is

required for low sidelobe levels.

2) Like MSK, GMSK is a constant envelope signal and does not require a linear power

amplifier, thus providing somewhat lower implementation cost.

3) GMSK is used by the European GSM digital telephone system, providing access to readily

available technology for its implementation and an established experience base with the

waveform. GSM utilizes a BbT of 0.3 for sidelobe management.
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Figure D-4 Power Spectra of GMSK

GMSK is a robust, spectrally efficient modulation that was selected for GSM. GMSK is also a

very interesting waveform since it can be viewed from a :aumber of perspectives:

1) GMSK can be viewed as a member of the m-ary PSK modulation waveforms with m=4.
Demodulation is either coherent or differentially coherent (if data is encoded differentially).

2) GMSK can also be viewed as m-ary FSK modulatior_ with m=2 (thus the reference as
GMSK/GFSK). FSK can be detected either coherenlty or non-coherently.

The actual implementation approach followed by GMSK rGFSK is significant since it effects the

Eb/No needed to achieve a specific bit error rate (BER). For a BER of 10"3, the following

Eb/N o ratios are required:

1) Eb/N o = 6.8 dB ifGMSK is demodulated coherently using ideal matched filter
detection.

2) Eb/No = 9.8 dB is needed if the waveform is demodulated as coherent GFSK.

3) Eb/N o = - 9.3 dB is needed if the waveform is d_modulated as differential-coherent
GMSK, where the data is differentially encoded ;_rior to transmission.

The above Eb/No ratios are computed for ideal signal de:ection and represent the best attainable

performance. Clearly, the selected demodulation approa :h greatly effects the achievable Eb/No.

An additional consideration in determining Eb/No for GMSK is the effect of the Gaussian pre-

filter. While ideal MSK (BbT = oo, i.e., no pre-filter) achieves the Eb/N o computed above, the

effect of any prefiltering begins to degrade the Eb/No. Figure D-5 shows the adjacent channel

interference of GMSK as a function of BbT [6]. In ordel to achieve -60 dB of rejection for

25KHz channel spacings (fs/T = 25KHz/19.2 kbps = 1.31_,BbT must be between 0.16 and 0.2.

This represents significant bandlimiting of the signal in order to fit the 19.2 kbps data rate into
the 25 KHz channel. As shown in Figure D-6, the degradation to Eb/N o for GMSK as a function

of BbT requires an additional 1 to 2 dB of Eb/No [6].
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Toavoid excessive intersymbol interference for low BbT (0.12 to 0.2), the 19.2 kbps GMSK

waveform was modified to use a BbT = 0.3 and used a lower modulation index to provide the

necessary bandlimiting (i.e., the GMSK modulation index, h = 0.5 was reduced to h = 0.25). The

waveform can no longer be considered GMSK and is instead GFSK.
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3.3 Comparison of D8PSK (31.5 kbps) and GMSK/GFSK (19.2 kbps)

(in Terms of Eb/N,, S/N and D/U)

With the above background information on the two modulation candidates, this section provides

a relative performance comparison of D8PSK and GMSK/GFSK. Table D-1 summarizes the

Eb/No, S/N and D/U performance of these waveforms. A BER of 10 -3 is assumed.

Bit Error Rate = 1 E-3

Waveform Eb/N o 1 S/N = (Eb/No) * R/W D/U 3
2

D8PSK at 31.5 kbps 12.9 dB 17.7 dB 23 dB

(12.9 + 4.8) (16 dB + 7 dB fade margin)

GMSK/GFSK at

19.2 kbps

7.8 to 8.8 dB 10.8 to 11.8 dB 14 dB

- as coherent PSK (6.8 dB + 1 to 2 (7.8/8.8 + 3) (7 dB + 7 dB fade margin)

dB due to BbT )

10.8 to 11.8 dB 13.8 to 14.8 dB 14 dB

- as coherent FSK (9.8 dB + 1 to 2 (10.8/11.8+3) (7 dB + 7 dB fade margin)

dB due to BbT )

10.3 to 11.3 dB 13.3 to 14.3 dB 14dB
- as differentially

coherent PSK (9.3 dB + 1 to 2 (10.3/11.3 + 3) (7 dB + 7 dB fade margin)

dB due to BbT )

Table D-1 Comparison of D8PSK and GMSK/GFSK in Terms of Eb/No, S/N and D/U

1 Data link system performance is typically compared in terms of Eb/No. While GMSK/GFSK

demodulated as coherent PSK has an advantage in te_ns of Eb/No, this demodulation

approach is not as robust as GMSK/GFSK using coh.'rent FSK or differential PSK. Coherent

PSK demodulation requires accurate phase tracking _nd likely will require lengthy training

and synchronization sequences to achieve phase cohc_rence. Coherent PSK is also more

vulnerable to channel impairments and self-interfere:ace (D/U) during initial signal

acquisition. The more likely method for GMSK/GFSK demodulation is either as coherent

FSK or differentially coherent PSK. When compared to D8PSK, the performance difference

between GMSK/GFSK for coherent FSK or differenzially coherent PSK demodulation is 1 to

2.5 dB. This 1 to 2.5 dB is the price paid for the higher channel data rate for DSPSK.

Signal to Noise ratios (S/N) are computed using the appropriate R/W ratios for each waveform.

For D8PSK, R = 31.5 kbps and W = 10.5 K/-Iz as the matched filter detection bandwidth. For

GMSK/GFSK, R = 19.2 kbps and W = 9.6 KHz as tie matched filter detection bandwidth.

Typically, the S/N ratio is not used for one-on-one comparison of modulation waveforms

since it includes the data rate, R, and thus no longer i3rovides an apples-to-apples

comparison. The S/N ratio is important in terms of determining that a sufficient amount of

signal power is available to achieve the desired sign_l rate.

D/U represents the 'Desired versus Undesired' signal ratio that can be tolerated in meeting the

specified BER. It is an important parameter of the I",_bustness of a waveform to self-interference

and affects frequency reuse. From Table D-l, D8PSK is clearly not as robust as GMSK/GFSK

when it comes to D/U. The impact of D/u on frequency reuse is discussed in Section 3.5.
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BasedontheassumptionthatGMSK/GFSKwill usedemodulationotherthancoherent PSK

demodulation, Table D-lindicates that there is only a 1 to 2.5 dB difference between the D8PSK and

GMSK/GFSK waveforms in terms of Eb/N o. There is a considerable difference between D/U for

D8PSK versus GMSK/GFSK with GMSK being more robust. This is the unavoidable price of trying
to achieve a higher data rate using DSPSK.

3.4 GMSK Demodulation Performance

To gain a better understanding of GMSK/GFSK performance beyond the theoretical results just

stated, several demodulation approaches were evaluated based on published papers. Figures D-

7, D-8 and D-9 show typical demodulators for coherent orthogonal detection, differentially
coherent detection, and non-coherent limiter discriminator detection of GMSK.

Figure D-7 Coherent orthogonal GMSK detection

_Lowpass Fiite_-_ FM

[(bandwidth Bi] - [M°dulat°r[

Figure D-8 Differentially coherent GMSK detection

dNatP_Za[Gaussian I I 17x__ I Limiter ' 7 I .. /

|(bandwidth B1 IM°du'at°r|

Figure D-9 Noncoherent limiter discriminator GMSK detection
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The most promising detectors for GMSK are the differentially coherent detector and the
noncoherent limiter discriminator detector. Coherent orthogonal detection requires phase

coherence of both the high and low frequency tones, which is difficult for burst type

communications such as VDL Mode 4. Since the proposed 19.2 kbps GFSK waveform is no

longer MSK in nature, orthogonal detection is no longer possible. In addition, it is not evident
whether differential coherent detection can be applied to GFSK since it is no longer MSK in

nature and no longer exhibits +/- 90 degree phase shifts between bit intervals (perhaps frequency

doubling to recreate the +/- 90 degree phase shifts may still allow use of differential detection).

Performance ResuRs for Differentially-Coherent Detection of GMSK

The performance of various differentially coherent detectors for GMSK is described in [7].

Using the conventional differential detector shown in Figure D-8, the required Eb/N o increases

to - 18 dB for GMSK with BT = 0.3 (-9 to10 dB worse titan for a coherent detector). By using

decision feedback, much of the degradation is recovered. Figure D-10 provides performance

curves for 1-bit differential detectors with and without decision feedback for BT = 0.3 and 0.25.

lO-t

I I t I [ I

IC --

1D;_ ....

_. 0.25

S_'Rlo-, -\'X___x, N

10-4

8 lO 12 t4 16 18 20

g./t¢o (,m)

Figure D-10 BER performance of one-b_t differential detectors [7]

(1C for conventional detector, 1DF using decision feedback)

Additional improvements can be gained by using two-bit differential detectors. Figure D- 11

provides performance curves for conventional 2-bit differential detectors with Gaussian predetection

filters (2CG), Butterworth predetection filters (2CBW) ard a combination of one and two-bit

differential detectors using decision feedback (I+2DF) for BT = 0.3 and 0.25. Figure D-12

summarizes performance curves for a range of 1 and 2-bi: differential detectors, with and without

decision feedback for BT = 0.25. Also shown is the perff,rmance curve for coherent detection.
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Figure D-11 BER performance of two-bit differential detectors [7]

(2C for a conventional, I+2DF using combined one and two-bit decision feedback)
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BER performance of various differential GMSK receivers tBT = 0.25) 171

From Figure D-12 it is evident that differential detection results in considerable Eb/N o
degradation of 6 - 8 dB relative to coherent detection at a BER of 10"3, unless decision feedback

and more complex, combined feedback circuits are used to reduce intersymbol interference

effects. By using a two stage, 2 and 3-bit differential detector (2+3DF), --4 dB of performance

are recovered, bringing it within -3 dB of coherent demodulation.

It is not clear how a differentially coherent type of demodulator can be used for GFSK unless

some type of frequency doubling is used to regenerate the +/- 90 degree phase shifts between
successive bit intervals as is the case for GMSK.
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Performance Results of Noncoherent Limiter Discriminator Detection of GMSK/GFSK

The noncoherent limiter discriminator, shown in Figure D-9, is a simple and low-cost detector

that has been used in earlier prototype 9.6 kbps GMSK aeronautical data links. Figure D-13 [8]

illustrates performance of such a detector for BT = 0.25, where K = oorepresents the curve of

interest (K = oorepresents a non-fading environment; FD = 0 indicates no Doppler present).

Without decision feedback, -16 dB of Eb/No is needed for the limiter discriminator detector for

a BER of 10"3. With decision feedback, Eb/N o reduces to -12 dB.

It is also suggested in [9] that intersymbol effects due to Gaussian premodulation filtering are

reduced by using Viterbi decoding with the limiter discriminator detector. Figure D-14

illustrates the additional 2 - 4 dB improvement that can be gained using Viterbi decoding with

the limiter discriminator, bringing it within the performance of the coherent detector. Viterbi

decoding can also provide performance benefits for the differential decoder discussed earlier.

Summary on GMSK/GFSK Demodulation

The most likely demodulation algorithms used for GMSK/GFSK VDL Mode 4 are the

differentially coherent detector and the non-coherent limiter discriminator detector. By

themselves, these detectors experience considerable degradation in the required Eb/N o ratio, in

the vicinity of 16 - 18 dB for a BER of 10 -3 and BT = 0.3. However, by using decision feedback

equalizers or Viterbi decoding in conjunction with these detectors, much of the degradation can

be eliminated. Thus, these demodulators are no longer as simple as the basic limiter

discriminator; their implementation complexity is TBD. Use of the differential detector for 19.2

kbps GFSK may not be possible unless frequency doubling is used to regenerate the +/- 90

degree phase shifts between bit intervals.

Figure D-13

BIT = 0.25 FO = FOnt = 0

GMSK-LDD

K (dB) =

No Feedback

With Feedback

12 16 20 24 28 32 36 40

BER performance of non-coherent limiter detection of GMSK (BT -- 0.25) [81
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Figure D-14
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BER performance of non-coherent limiter detection of GMSK (BT = 0.25)

with decision feedback (FB) and/or Viterbi decoding (VD) [9]

Throughout all of this discussion, it is not clear what the effect ofBT = 0.3 and using a
modulation index of h = 0.25 has on the D/U performance of 19.2 kbps GFSK. Additional

simulation analysis is required to determine expected D/U performance for these detectors.

3.5 VHF Frequency Engineering for VHF Aeronautical Data Link

This section examines the frequency reuse distance as it relates to VHF aeronautical data link.

Co-channel DFLT

Figure D-15 illustrates the cylindrical coverage models that are typically used in determining the

frequency reuse distance for co-channel D/U ratios. Figure D-15a illustrates the model for two-

way data link, while Figure D- 15b illustrates the model for ground broadcast stations. In both

cases, an aircraft is shown at the edge of the coverage volume at a range of dD and is subjected

to unintended co-channel interference by another aircraft in the case of Figure D-15a, or another

ground station in the case of Figure D-15b. In either case, this unintended distance is dU. The

D/U (dB) ratio is related to range as 20 log (dU / dD). Assuming that radio line of sight (RLOS)

is not encountered first, the facility separation distance for frequency reuse is thus the sum of the

distances as follows: 1) for two-way data link facilities this distance is equal to _ dD(A) + dU

(own aircraft to interfering aircraft) + dD(B)-, and 2) for ground broadcast facilities the reuse
distance - dD + dU. If this distance exceeds RLOS, then the interference distance, dU becomes

equal to R_LOS.
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Figure D-15a Facility Separation for Two-Way Data Link Communications

Airborne

User
undesired

.... distance du
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Facility separation

distance = d o + d U
Ground Station A Ground Station B

Coverage Volume Coverage Volume

Figure D-15b Facility Separation for Ground Broadcast Data Link Communications

Table D-2 summarizes the frequency reuse distance calculation for a number of aeronautical data

link services as a function of D/U. The service radii of both ground facilities are assumed to be

equal. D/U ratios of 14 dB and 20 dB are currently used in making frequency reuse assignments
for conventional aeronautical VHF voice communications in the USA and by ICAO,

respectively. Previously, D/Us used for D8PSK were 23 cB (16 dB+ 7 dB margin) and for

GFSK 14 dB (7 dB+ 7 dB margin). The 7 dB margin repJ esents additional allocation to D/U,

beyond what is provided by the actual modulation wavefo:m. This margin includes fading

effects, any imbalances in transmitter gains, transmit and i eceive antenna gains, etc.. As will be

seen, the actual margin used can greatly effect the frequency reuse distance.

Table D-2 uses 14, 18,20 and 23 dB to calculate the expected frequency separation needed in

making frequency reuse calculations.

Note 1: Radio line of sight (RLOS) calculations are based on 4/3 earth radius radio coverage.
For two elevated sites the RLOS (nmi) = 1.23 (scrt (hl) + sqrt (h2)). A 100 ft antenna

height is assumed for ground broadcast stations. For two-way data link, hl and h2 are

the heights associated with the two aircraft, e.g., ial = h2 = 45,000 ft for high altitude
enroute areas, and RLOS is -522 nmi.

D-14



Note2: Frequencyreusedistanceiscomputedasfollows(refertoFigureD-15):

a) Two-waydatalinkreusedistance= dD(A)+ min(10(D/U)/20* dD(A),RLOS)+
dD(B),
forgroundstationsA andB.

b) Groundbroadcaststationsreusedistance= dD + min(10(D/U)/20* dD,RLOS)

In TableD-2,thecolumnsof interestareD/U= 14 dB and D/U = 23 dB, which represent GFSK

and D8PSK, respectively. The frequency reuse distance can be used to compute data link

capacity as bits-per-second per unit area (bps/nmi 2. Table D-3 lists the data link capacities for

the various VHF aeronautical data link applications.

From Table D-2, it is observed that low D/U ratios provide frequency reuse advantages for data

link applications with relatively high altitude but relatively short range coverage regions due to
the relatively large RLOS, e.g., terminal area Local Controller communications (refer to Tables

D-2 and D-3). Conversely, there is no benefit of having low D/U ratios (at least D/Us of 14 dB)

for 1) long range communications regions, since RLOS becomes the limiting interference range,

and for 2) relatively low altitude coverage regions with moderate communications ranges, which

provide low RLOS. High altitude (45,000 ft) enroute two-way data link (Table D-2) is an

example where RLOS limits the interference region for all D/Us greater than 14 dB.

Clearly, the D/U margin that is required to ensure high-integrity data link performance (in

addition to the D/U associated with the modulation waveform) has a significant effect on

whether any frequency reuse benefits can be gained. With the exception of terminal area Local

Controller two-way data link, most other aeronautical VHF data link applications show little or
no frequency reuse advantage for D/Us > 18 dB.

Adjacent Channel Performance

The first adjacent channel is the most difficult off-channel interference requirement for both D8PSK

and GFSK modulations. Typical VHF Comm receivers are capable of attenuating adjacent channel

signals by -60 dB. This level of performance is also expected for D8PSK and GFSK data link

receivers. The 60 dB adjacent channel attenuation is allocated to D/U, with the remainder being

available for "near-far" protection. Typical VHF Comm receivers use a D/U of 14 dB, thus leaving 46

dB of"near-far" protection. For a 150 rimi service volume (i.e., "far" transmitter) the interfering
transmitter (i.e., "near" transmitter) can be as close as 0.75 nmi from the receiver. Thus for VHF Comm

the adjacent channel interferer (usually another airbome aircraft) can be very close to the receiver

without causing any degradation. Thus VHF Comm service volumes on adjacent channels can be

assigned to reach within 0.75 nmi (see Figure D-16). This greatly facilitates frequency reassignment.

0.75 nm i

Figure D-16

Ground Station A Ground Station B

Coverage Volume Coverage Volume

(f= x M Hz) f= (x + .025) M Hz

Adjacent channel coverage region assignment (two-way data link)
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Facility Type

Enroute two-way
data link

(45,000 ft altitude)

Enroute two-way
data link

(25,000 ft altitude)

Terminal area

Local Controller

(25,000 fl altitude)

NABS-V

(20,000 fl altitude)
20 nmi service radius

NABS-V

(20,000 fl altitude)
30 nmi service radius

Weather

(AWOS/ASOS)

(10,000 fl altitude)

Departure ATIS

(100')

GFSK

Frequency Reuse
Distance

(D/U = 14 dB)

822

420

210

120

180

150

35

D8PSK

Frequency Reuse
Distance

(D/U _>23 dB)

822

509

449

206

216

160

35

Relative Data Link

Capacity (bps/nmi 2)

D8PSK/GFSK

1.64

(e.g., 31500/19200)

1.12

0.36

0.56

1.14

1.44

1.64

Table 1)-3 Relative Data Link Capacities of D8PSK versus GFSK for Various Data Link Applications
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4. Description of VHF Data Link Modes

This section provides an overview of each of the VHF da:a link modes currently being developed

for future CNS/ATM data link applications. The expecteJ benefits and potential shortcomings of

each approach are identified.

VDL Modes 2 and 3 have been under development in RTCA SC-172 and the ICAO AMCP for

ATC/ATS data link applications for about 4 years. VDL Mode 4 is receiving more recent

consideration for ADS-B and is also capable of providing ATC/ATS services.

4.1 VDL Mode 2

VDL Mode 2 is intended to serve as an air-ground data link and is capable of both two-way,

addressed communications and can also provide broadcast services. VDL Mode 2 sub-network

layers are described below.

4.1.1 Physical Layer

The VDL Mode 2 physical layer uses 31.5 kbps D8PSK rlodulation using raised cosine filtering

(a = 0.6) for spectral shaping to maintain the signal withia the 25 KHz channel, with low

sidelobes on the adjacent channel. The VDL Mode 2 RF pulse consists of the following:

1) Transmitter power stabilization sequence - this interval allows the transmitter to ramp up its

RF power and to provide a stable signal to allow the receiver to establish an Automatic Gain

Control Setting (AGC) in preparation for acquiring message synchronization. The

transmission sequence consists of four '000' symbols

2) Synchronization and ambiguity sequence - a 16 symbol (48 bits) unique word

synchronization sequence is used to acquire precise message synchronization to allow data
demodulation.

3) Message header - the header consists of a 17-bit message length word and 3 reserved bits,

yielding 20-bits of header. The 17-bit message length word indicates the number of data bits

that follow the header. A (25,20) block code for error correction yields an additional 5 bits

of coding. The 25-bit header is appended with 2-bits :.o yield a nine symbol header.

4) Data sequence - the maximum length data message that can be transmitted in a single RF

pulse is 255-bytes. The data sequence uses a Reed Solomon RS(255,249) 28-ary forward
error correction code to ensure a 10-4 bit-error-rate. Thus a maximum of 1992 bits of data

can be sent in a single VDL Mode 2 transmission. Fc r shorter messages, the RS code can be

reduced, i.e., fewer parity symbols are used. Interleaving of data bytes is used to improve

the performance of the RS code. Prior to transmission, the bit stream is bit-scrambled using

a pseudo noise (PF0 code to aid clock recovery at the receiver and to provide a random data

sequence to create a more uniform signal spectrum.

The physical layer performs channel sensing to determine if the channel is available for signal
transmission. In addition, receive-to-transmit and transm t-to-receive turnaround time is critical

and is maintained to a minimum to support the Carrier Sease Multiple Access (CSMA) protocol
used in the data link layer.
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4.1.2 Data Link Layer (MAC sublayer)

The media access channel (MAC) sublayer provides transparent channel access to the DLS

sublayer. The VDL Mode 2 MAC layer uses non-adaptive p-persistent CSMA to allow equitable

access opportunity to all stations. The MAC sublayer also provides an indication of channel

congestion to the management entity, which determines the quality-of-service of the link. The

MAC layer uses a number of timers, the persistence parameter (p) and retry counter to perform
CSMA and to compute channel congestion.

4.1.3 Data Link Layer (DLS sublayer)

The data link services (DLS) sublayer implements the Aviation VHF Link Control (AVLC),

which is a modified version of the High Level Data Link Control (H:DLC) protocol (ISO 3309).

The DLS processes data link frames and transfers received and transmit data to / from the ISO-

8208 sub-network layer. The AVLC frame format is shown in Figure D-17.

From Figure D-17 an AVLC frame begins and ends with a '01111110' flag that provides the
demarcation between frames. Contained within the frame are the destination and source

addresses that indicate the participant DLS entities. Following the addresses is a link control

field that implements the AVLC frame message exchange and protocols. The control field is

followed by the information field, which represents the user data. The frame ends with a 16-bit

frame check sequence that is used to detect frame errors.

AV-LC DLS services consist of frame sequencing, error detection, station identification,

broadcast addressing and data transfer. The DLS determines if a frame is addressed to it, detects

whether or not the frame was received correctly, and ensures that no redundant frames are

transferred to the sub-network layer.

DESCRIPTION OCTET NO 8 I 7 ]
FLAG - 0 I

1 22 L 23 I

-- Destination J --T--
2 15

-- Address "1-- --T'-
3 8

-- Fietd --T-- "T-
4 1

5 - 22 i

-- Source i "-I-"
6 15

- Address --1-- "-W"
7 8

- Field "1-- --T"
8 1

Link Control Fietd 9 I I

I NFORMAT ION N- 2 I I

FRA.NE N-I 9 i i
- CHECK - -

SEQUENCE N

FLAG o

BIT NUMBER

first bit

transmiited

°1 '1 'l 31 2
I I 1 1 I 0

24 [na 25 ' 26 ' 27 JA/G', ODest tion I 21 0

DL S-'_ress__ --I-- "-1-" -7-- 14 0

-1-- -'I-" "-I-" --I--
7 O

Z4 I 2S' 26, ' 27 I C/R O
Source _ i 21 O

Dk_'t-_ddress-T- "-I-- --r- 14 O

--I-- --r- "-r- --r_
7 I

i i )

P/F I1 i
US :R DATA

I_t SICdlIF|_UIT OCTI_T

! I

i i 16

1 -"- "- Li r sxG.Y  r -r- --r- S
0 1 1 1 1 1 1 0

Figure D-17 AVLC Frame Format [10]

D-19



AVLCcontrolcommandsandresponsesareshowninTableD-4. Thesecommandsimplement
theframeprocessingprotocols.ISO4335andISO7809describethedetailedHDLCprotocols,
withtheICAOAnnex 10 on VDL [10] describing any modifications to these protocols to

implement the AVLC.

Commands Responses

INTO (Information) INFO

RR (Receive Ready) RR

XID (Exchange Identity) XID

TEST TEST

SREJ (Selective Reject) SREJ (Selective Reject)

FRMR (Frame Reject)

UI (Unnumbered INFO) UA (Unnumbered Acknowledge)

DISC (Disconnect) DM (Disconnect mode)

Table D-4 AVLC Commands and Responses [10]

Data is transferred in the information fields of INFO, UI and XID frames. INFO frames provide

connection-oriented user data exchanges between two data link entities. UI (unnumbered

information frames) are used for connectionless data transfer for broadcast services. XID

(exchange identity information) frames are used to provide supervisory information for

management of the AVLC.

Similar to the MAC layer, the DLS / AVLC uses a numb¢:r of timers and counters (e.g., for

retransmit, acknowledgment, link initialization timing, maximum frame length, and number of

transmissions) that control the frame message exchange t_rotocol. These timers/counters are

defined in [10].

4.1.4 Data Link Layer (management entity)

The VDL management entity (VME) utilizes a separate lank Management Entity (LME) to

manages the DLS with a peer LME (an aircraft or grounci station). Communications with more

than one ground stations or aircraft require additional LMEs. The LME uses XID (exchange

identity) parameters to manage the data link. Again, a m_mber of timers and counters implement

the link management protocol.

4.1.5 Sub-Network Layer

All VDL modes utilize the ISO 8208 protocol as the lower network sublayer of the OSI stack.

This layer interfaces to the data link layer to receive error-free data link communications from

the AVLC sublayer and interfaces to the upper sublayers of the network layer to enable
internetwork communications.
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4.1.6 Summary of VDL Mode 2

VDL Mode 2 is a data-only data link (i.e., no digital voice capability) that provides an order of

magnitude increase in channel capacity versus VDL Mode 1. The increase in capacity is the

direct result of the 31.5 kbps D8PSK waveform (versus the 2400 bps MSK waveform used by

VDL Mode 1). As indicated in Section 3, D8PSK requires a D/U of 16 to 20 dB which

influences frequency reuse. Like VDL Mode 1, VDL Mode 2 uses CSMA channel access

protocol. In addition, VDL Mode 2 uses the bit-oriented protocol (versus character-oriented

protocol of ACARS) that provides compatibility to the ATN.

VDL Mode 2 is the simplest of the high-rate VDL modes being developed and is well suited

when channel efficiency and access demands are not at a premium. The CSMA protocol limits

VDL Mode 2 to providing strategic data link communications and cannot be used for time-

critical, tactical communications. VDL Mode 2 is intended for addressed, air-ground

communications, and can also provide a broadcast data link capability for high-rate broadcast

applications, e.g., weather information, including precipitation maps, etc..

In order to achieve a simplex broadcast data link using VDL Mode 2 will require additional

standardization activity to allow the AVLC data link sublayer to be bypassed, eliminating the

need for message ACKs (Acknowledgements) that are currently required to maintain a link

connection. Table D-5 summarizes the performance of VDL Mode 2. VDL Mode 2 is defined

in detail in the ICAO Annex 10 [10] and the associated ISO standards.

Communications Performance

Throughput delay moderate (_ 10 sec), depends on channel

loading

Message integrity, priority yes

ATN Compatibility yes

VHF Specific Services (VSS), i.e., non-ATN not currently planned but possible

Broadcast Capability well suited for efficient high-rate broadcast link

(additional standardization work required)

Voice/Data Data only

D8PSK D/U of 16/20 dB for frequency reuse

Table D-5 VDL Mode 2 Communications Performance Summary
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4.2 VDL Mode 3

Mitre, under the sponsorship of the FAA, has developed t_ e VDL Mode 3 concept as the next

generation VI-IF communications system, also called NEXCOM. VDL Mode 3 provides a flexible
architecture that allows a range of system configurations fi)r voice, data and integrated VI-IF digital

voice and data link simultaneously for multiple users on one channel resource. VDL Mode 3 was

designed, in part, to address the VHF frequency congestion problem by providing digital voice and
data link services with efficient use of available VI-IF Comm frequency resources. VDL Mode 3

MASPS and SARPS are currently being developed by RTCA SC-172 and the ICAO AMCP. This

section provides an overview of VDL Mode 3 and examines its communications performance.

Unlike VDL Mode 2, which provides data link services using CSMA, VDL Mode 3, using

TDMA channel access, is capable of providing a range of communications capabilities. The
VDL Mode 3 communications modes are 4V, 3V1D, 2V2D and 3T for standard range

communications and 3V, 3S, 2V1D and 3U modes when extended communications range is

desired. The 4V mode indicates that the VDL channel is configured to provide 4 independent,

dedicated digital voice sub-channels within the 25 KHz VHF Comm channel. This is

accomplished using different time slots for each voice sub-channels. For the 3V1D mode, one of
the four voice channels is used to provide a shared data channel (1D). The 2V2D mode provides

two voice and data sub-channels. Each voice channel is paired with a dedicated data channel to

allow, for example, two separate ATC controllers providing dedicated voice and data services for
voice and CPDLC data link simultaneously on one channel The 3T mode is intended to provide

demand assigned voice and data services.

Extended range modes have fewer time slots available to them due to additional range guard time

requirements and are thus constraint to providing 3V sub-channels. The 3S mode allows a
dedicated voice channel to be sent via 3 ground stations, intended for providing site diversity.

2V1D is similar to 3VID but is intended for extended range communications. The 3U mode allows

voice sub-channels that are not managed by the ground station, i.e., they are unprotected (U).

4.2.1 Physical Layer

Similar to VDL Mode 2, VDL Mode 3 RF pulses use 31.5 kbps D8PSK modulation using raised

cosine filtering (_x= 0.6) to maintain the signal within the 25 KHz channel and provide low
sidelobes on the adjacent channel. The typical RF pulse is also similar to VDL Mode 2.

However, since VDL Mode 3 is a TDMA system and has a number of different modes, RF

pulses are assigned within time slots in several ways. Figltre D-18 shows a typical time slot and

the associated RF pulse transmissions for both airborne and ground transmissions.

Unlike VDL Mode 2, where one basic RF pulse is transmi_ed using CSMA, VDL Mode 3 uses

two RF pulses within a single time slot, a management (M) burst, and a voice/data (V/D) burst.
Each of these bursts has the typical ramp-up (5 symbol times) and ramp-down (2 symbol times)

intervals, 16-symbol synchronization sequences, system data for the M burst, and a header and
user information in the V/D burst.

Special synchronization sequences are used to allow successful synchronization, yet distinguish
between the different types of requests and responses that are indicated by the transmission.

Synchronization sequences are as follows:

Standard synch S 1 (for M burst downlink)

Net entry requests S 1* (for M burst downlink)

Poll responses $2. (for M burst up/downlink)

V/D burst synch S2 (for V/D burst)
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Figure D-18 VDL Mode 3 Burst Transmissions - TDMA Timing Budget [11]

The M burstcontainssystemdata,consistingofmessage ID, slotID, groundstationcode,

channelconfiguration(4V,3VID, etc.),voicesignaland squelchwindow informationand a

rangcofmessage depcndcntdatathatisusedtomaintainchanneland communications

management oftheVDL sub-network.The M-channelburstformatisasfollows:

l) UplinkM-burst

For thenon-3T configuration,32 symbolsarctransmitted,i.e.,96 bits.The 96 bitsconsists

of4 Golay (24,12)codewords. For 3T, systemdataconsistsof 128 symbols,i.c.,384 bits,

consistingof 16 Golay (24,12)codcwords.The Golay countcorrectsup to3 biterrorsor

detcctsasmany asfourbiterrors.

2) Downlink M-Burst

16 symbols,i.c.,48 bits,arctransrnittcd,consistingof2 Golay (24,12)code words.

The V/D burstconsistsofheaderand userinformationdata.The hcadcrconsistsof8 symbols

(or24 bits)and isa singleGolay (24,12)codcword. User informationconsistsof 192 symbols

(or576 bits).Whcn tmnsrnittingdata,theuserinformationisencoded asasingleReed Solomon

RS(72,62)2Lary codc word capablcofcorrcctingup tofivecodeword symbol errors.For voice,

errorcorrectionisincludcdinthevocodcritsclf.The vocoderisexpectedtoprovidesatisfactory

performanceatbit-crror-ratcsof 103. The vocodcrrate(includinginternalerrorcorrection)is

4800 bps (a4000 bps vocoderisused intruncatemode, which occurswhcn systemtiminghas

degradedbelow a specifiedlevel).

Intcrlcavingisnot usedinVDL Modc 3,butbitscramblingisused.

As forVDL Mode 2,thephysicallayershallminimize _ansrnit/receivcturnaroundtirncsto

enhanceperformance.

D-23



4.2.2 Data Link Layer (MAC sublayer)

The MAC sublayer supports both voice and data operations. For data, the MAC sublayer implements

a ground station centralized, reservation-based access to the channel, which permits priority-based
access. In addition, the MAC sublayer implements polling and random access methods for

reservation requests. For voice, access is primarily on a "listen before talk" discipline. In order to

avoid a "stuck" microphone, the ground can preempt the airborne user who is occupying the channel.

The MAC protocol timing is as follows: A TDMA frame consists of a 120 ms time interval that
contains either three or four time slots. The duration of the time slot was selected based on

conventional 4800 bps vocoder frames which are on the order of 20 to 30 ms. For standard range

communications, a TDMA frame consists of four 30 ms time slots with a round trip guard time

of 2.71 ms (Figure D-19). Extended range uses three 40 ms time slots, which were increased in

duration to accommodate the increased guard time. Each time slot contains an M burst for

signalling and link management and a V/D burst for user information.

120n_

I
P'"+'IBurst j

000

a) Standard Range

_1_ TDMA frame
120 ms

slotC [ slotA ],
1

slot A / slot B
/

i_, Slot
40 ms

I'MI v/o
IBur=I Burst

000

b) Extended Range

Figure 1)-19 VDL Mode 3 Frame Structure [12]

User Groups and System Configuration

Using the TDMA frame and time slot structure just described, and the communications modes

indicated previously (4V, 3VID, etc.), a number of user groups and system configurations are

defined for VDL niode 3. These are listed in Table D-6. Up to 4 user groups are possible per

VHF Comm channel. Time slots are identified as slots A, B, C, and D. The system

configuration is determined by the controlling ground station.
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Standard

Range

Extended

Range

System

Conflg.

4V

2V2D

3T

3V

3S

2VID

3U

User Groups
Supponedr

Identifying Time Slots

4/(A, B, C, D)

3/(A. B, C)

2/(A, B)

1 to 3/(B, C, D)

3/(A,B,c)

1/(A)

2/(A,B)

3/(A, B, C)

I

Services to

Each Group

Dedicated voice ckt

Dedicated voice ckl
w/shared data ckt

Dedicated voice ckt
w/dedicated data ckt

to Each Group

1

2

2

Demand assigned 1 to 3
voice and data

Dedicated voice ckt 1

Dedicated voice cimuit

with 3 station d'wersity

Dedicated voice ckt
w/shared data ckt

Unprotected voice

3

2

1

Table D-6 VDL Mode 3 System Configurations [12]

Logical Burst Access Channels

Media access is controlled as follows; two TDMA fimnes (120 ms each) are used to define a media

access (MAC) cycle, with individual frames denoted as odd and even. During each MAC cycle,

the VDL grants access using Logical Burst Access Channels (LBACs). LBACs are defined for the

standard configurations (4V, 3V1D, 2V2D, 3V, 2V1D, 3U), the 3T configuration, and the 3S

configuration. The LBACs provide dedicated bursts within the MAC cycle for various types of

communications; e.g., Table D-7 describes the type of channel access det'med for the standard

LBAC configurations. From Table D-7, eight LBACs are available for uplink and downlink

transfers; 1) three M burst downlink LBACs for polling responses, acknowledgements and random

access, 2) two voice and two data LBACs for odd and even frame voice and data transmissions,

and 3) an M burst uplink LBAC that also serves as the M burst that provides the timing reference

point. The timing reference M burst is generated by the ground station to provide the overall

synchronization of the MAC TDMA protocol. In addition to the eight standard LBACs, the 3T

configuration uses 18 LBACs, while the 3S configuration uses 12 LBACs (not shown). LBACs

are precisely timed within the time frames based on the timing reference point.

MAC Timing States

The VDL derives its primary timing from the "timing reference point", which is the time of the

first received symbol of the synchronization sequence of an M burst uplink from the ground

station. If the airborne VDL has not received an updated timing reference, he will eventually fall

out of the primary timing state and will attempt to obtain timing from Voice/Data (V/D) bursts.

The timing state when V/D timing is used is referred to as the Alternate Timing State (ATS). If

timing is further lost, the "free running" timing state is entered. Channel access using Logical

Burst Access Channels (LBACs) is dependent upon the timing state and the management

signalling information obtained from the M uplink burst during the previous MAC cycle.
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I.BAC#*

1

2

3

4

5

A__

air only

air, ground

air only

air. ground

D_crI_on

M downlinkburst usedfor polling response or Random Access (RA)

V/D (voice) burst even frame

M downlinkburstused for ACK or RA

V/D (data) burst even frame

ground only M uplink burst and timingreference point

6 air, ground V/D (voice) bum odd frame
i

7 air only M downUnkburstused forACK or RA

8 air, ground VK) (data) burst odd frame

Table D-7 Logical Burst Access Channels (LBACs) for Standard Configurations [12]

Voice Access

For voice transmissions, channel access is granted based on the timing state, the voice signalling

information received in the M uplmk burst during the previous MAC cycle, and the system

configuration (4V versus 3T). The 4V, 3VID, 2V2D, 3V and 2V1D modes provide for

dedicated voice access LBACs. The 3T configuration supports voice using reservation

signalling. In the event primary timing degrades sufficimtly, voice communications will be

"truncated", where a reduced rate vocoder algorithm is used to shorten the require V/D burst

transmission (instead of using a 4800 bps vocoder, a red uced rate 4000 bps vocoder is used).

Unprotected voice access (3U) is allowed even in the "free running" timing state.

Link Management & Data Operation Support

The MAC layer at the command of the Link Management Entity (LME) in the Data Link

Services (DLS) sub-layer (Section 4.2.3) uses specific Logical Burst Access Channels (LBACs)

to send messages to support the polling, net entry, and b_aving net message protocols.

In the event the user data is longer than the V/D burst, the MAC layer segments the data into

individual bursts. The end-of message (EOM) flag is se at in the final burst transmission.

Airborne users attain channel access either using "pollirLg" or "random access". When data is

available for downlink, a Reservation Request LBAC is sent to the ground station to indicate that

data is available for downlink. The ground station then sends a Reservation Response LBAC

that signals an "access scheduled" indication along with, information of which slots should be

used in the following MAC cycle. There are no acknowledgment messages required since those
are handled by the DLS sub-layer AVLC protocol. The protocol also allows for automated

handoff of ground stations for the 3T mode, assuming fl_e radio can be retuned within 2 ms.

4.2.3 Data Link Layer (DLS sublayer)

The DLS sub-layer is functionally identical to the DLS _ublayer of VDL Mode 2 using the
Aviation VHF Link Control (AVLC) protocol which is a modified version of the ISO 3309

HDLC protocol. The only differences are in the interface to the MAC layer (TDMA for VDL

Mode 3 versus CSMA for VDL Mode 2).
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Theprimarydifferenceis thattheDLSusestheM burstsaspartof itslink management.Before
anylink canbeestablishedbyaDLSLinkManagementEntity(LME)theVDLmustacquire
twoconsecutiveM uplinkburstscontainingthesameinformationin theinitial 3controlbytes
(i.e.,systemconfiguration,squelchwindow,slotID andgroundstationcode).TheM burstsalso
providethetimingreference.Oncethenetis initialized,netentryinvolvesthefollowing
sequenceof messageexchanges:1)sendingadownlinknetentrymessage,2)receivinganet
entryresponsefromthegroundstation,3)sendingan'initialpoll response"downlink,and4)
receivingapollingmessagefromthegroundstationthatprovideschannelaccessinformation
whendatacanbedownlinked.

M burstsarealsousedfor"link release"and"handoff"betweengroundstationsand/ or a

Ground Network Interface (GNI). All handoff activity is confined to the lower layers (MAC and

DLS). The sub-network virtual connection is undisturbed. Depending on the time duration

associated with a handoff, an issue of making and breaking connections may arise. While typical

radio communications today use a break-before-make handoff, it may be necessary to perform a

make-before-break handoff (TBD). Make-before-break requires that a new connection is made

before abandoning the previous connection. This may be necessary to avoid loss of important

messages, i.e., a controller instruction via CPDLC. The impact of make-before break may

require an additional channel / sub-channel resource.

As always, a number of timers and counters are used by the DLS to control protocol processing.

4.2.5 Sub-Network Layer

The sub-network layer is the same for all VDL modes and is not discussed here.

4.2.6 Summary of VDL Mode3

Compared to VDL Mode 2, VDL Mode 3 is considerably more complex, providing a wide range

of system configurations for digital voice, data and simultaneous, integrated voice and data

communications via the TDMA time slots (refer to Table D-6 for a list of the system

configurations). VDL Mode 3 was designed to make very efficient use of the 25 KHz channel in

order to increase VHF Comm data link capacity and to help alleviate VHF Comm frequency

congestion. VDL Mode 3 data link communications are ATN-compatible.

Within a single frequency channel VDL Mode 3 is capable of supporting 4 dedicated voice sub-

channels or circuits (4V mode) or can trade off one of the voice circuit as a shared data circuit

(3VID mode). A 2V2D mode allows a dedicated pair of voice circuits to have their own

associated data circuit. The 3T mode allows for demand assigned voice and data. Since VDL

Mode 3 uses discrete addressing in most of its system configurations, this allows for "'caller ID"

and "selective calling" and allows a ground station to pre-empt an airborne voice transmission

due to a stuck microphone condition or voice priority.

Digital voice is accomplished by use of a 4800 bps vocoder. To accommodate four voice

circuits on a 25 KHz channel requires a signalling rate of-31.5 kbps. Thus the VDL Mode 3

requires 31.5 kbps D8PSK modulation to support the intended voice and data capacity. One of

the considerations in using 31.5 kbps D8PSK in a 25 KHz is its sensitivity to co-channel

interference (D/U). VDL Mode 3 has the ability to mitigate some of this interference by using a

coded squelch, which provides time windows around the time of expected signalling bursts. Any

signal detected outside of these times is considered to be interference and is ignored.
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VDLMode3 communicationsaredirectlyundergroundstationcontrol,which provides

centralized timing and reservation-based access among all users, allowing priority-based access.

Airborne users gain access to the channel'using polling and random access for reservation

requests to downlink data.

Sufficient guard times are allocated to the TDMA slots to allow collision free communications

for all line-of-sight scenarios (e.g., 200 nmi range or greater). Guard times must account for

round-trip timing since ground station "timing reference" transmissions experiences a range

delay to distant users, whose own sense of timing is thus delayed. The return trip is to account

for the range delay back to the ground station. The round-trip time is also needed to support

party-line voice for users that are at maximum range, but on opposite sides of the ground station.

With its range of system configurations, VDL Mode 3 is thus ideally suited for providing

ATC/ATS communications of CPDLC, FIS and FIS-B and at the same time provides voice

capability. The end-to-end transfer delay for VDL Mode 3 messaging is expected to be 3

seconds (95% of the time). This relatively low latency (compared to VDL Mode 2) is sufficient

for ATC/ATS communications currently being planned. __'ay new requirements for tactical data

link messaging (latencies on the order of 1 second) may not be accommodated by VDL Mode 3.

Unlike VDL Mode 2, VDL Mode 3 will require more significant changes to protocols to allow

for a broadcast data link mode, e.g., uplink of weather intormation. For broadcast services VDL
Mode 2 is the better candidate.

The discussion of this section was intended to provide an overview of VDL Mode 3 Much more

detail is available in the VDL Circuit Mode MASPS developed by RTCA SC-172 [ 11], and

Appendix A of the ICAO SP COM/OPS Divisional Meet:ng [ 12], although the later is somewhat

dated. Table D-8 summarizes the performance of VDL Mode 3.

Communications Performance

Throughput delay

Message integrity, priority

low (3 _econds, 95 %)

(may not accommodate tactical

communication)

yes

ATN Compatibility yes

VHF Specific Services (VSS), i.e., non-ATN not currently planned but possible

Broadcast Capability substantial standardization activity required to

provide simplex broadcast mode

Voice/Data Capable of both voice and data

31.5 kbps D8PSK D/U ot 16 to 20 dB for frequency reuse

Table D-8 VDL Mode 3 Communications Performance Summary
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4.3 VDL Mode 4

The VDL Mode 4 concept was developed by Sweden to support future CNS/ATM technology

using a Cellular CNS Concept (CCC). CCC is intended to provide a single CNS system solution
for all air space users for all phases of flight. Like VDL Mode 3, VDL Mode 4 uses TDMA

access techniques for efficient use of the channel resource, although the two approaches differ.

Unlike VDL Mode 3, VDL Mode 4 is a data-only data link, i.e., it does not support digital voice.

When combined with GPS/GNSS for position and time information, VDL Mode 4 can provide a

wide range of capabilities that are suitable for CNS/ATM data link. VDL Mode 4 supports an

autonomous, self-organizing TDMA (STDMA) protocol that allows a network of aircraft and

vehicles to participate in a communications network without the use of a ground station. VDL

Mode 4 also supports data link networks using passive ground stations used for ADS-B

surveillance, or one or more active ground stations, which direct network communications (i.e.,
more centralized control by the ground).

While originally developed more for broadcast applications such as ADS-B and DGPS/DGNSS

data link, VDL Mode 4 also includes capability for addressed point-to-point communications for

a range of applications. VDL Mode 4 is ATN-compatible but also provides VHF Specific

Services (VSS) data link that are non-ATN, which are used for local area, time critical (tactical)
communications.

This section provides an overview of VDL Mode 4 from the sub-network perspective (i.e., lower
layers) and summarizes the key issues associated with using VDL Mode 4 for CNS/ATM data

link. Additional attention is given to the ADS-B application since VDL Mode 4 is being

considered as an alternative to Mode-S for the ADS-B data link (Section 4.3.3.5 discusses VDL
Mode 4 use for ADS-B).

4.3.1 Physical Layer

Physical layer modulation candidates for VDL Mode 4 are 31.5 kbps DSPSK and 19.2 kbps
GFSK. Both of these waveforms were discussed in detail in Section 3. The D8PSK waveform is

primarily indicated as a candidate due to the legacy of the original VDL Mode 2 and VDL Mode

3 waveform design. However, 19.2 kbps GFSK is the desired waveform for VDL Mode 4 by its
developers. The GFSK waveform requires Gaussian prefiltering using a BT of 0.3 and a

modulation index of 0.25 to maintain the signal within a 25 KHz channel and provide low

sidelobes on the adjacent channel. As indicated in Section 3, GFSK is less sensitive to co-

channel interference (D/U ratio) facilitating frequency reuse for some data link applications and

coverage areas. D/U performance is especially critical for ADS-B, where it is important that

distant aircraft do not interfere excessively with ADS-B reports of close aircraft. As indicated,

GFSK provides a lower channel data rate versus D8PSK in a fixed 25 KHz channel (i.e., 19.2
kbps versus 31.5 kbps). This is the direct result of the higher signalling constellation of D8PSK

compared to GFSK, but is also the reason why D8PSK is less robust to D/U. The effective link

capacity is affected by the channel signalling rate, D/U ratio and the intended coverage region
(i.e., radio-line-of-sight).

As with VDL Modes 2 and 3, VDL Mode 4 uses a similar RF pulse that consists of transmitter

stabilization and synchronization segments followed by header (optional) and data segments and
a transmitter power ramp-down segment. Since VDL Mode 4 intends on all users to have the

same system time (using GPS/GNSS time), the range guard times must only account for one-way

D-29



rangedelays(recallVDL Mode 3 requires round-trip guard times since timing emanates from

the ground station and also experiences a range delay).

With a 13.33 ms time slot (see next section), RF pulse timing is as follows:

1) Transmitter stabilization sequence (832 ps or 16 bits duration)

2) Synchronization sequence (1250 _ or 24 bits)

3) Header sequence (0 gs since no header is used for VDL Mode 4)

4) User data (10 ms or 192 bits of data)

5) Transmitter ramp-down (300)_s)

6) Guard time (1250)_s or 24 bits, providing a one-way guard time for 203 nmi).

VDL Mode 4 is capable of 75 time slots per second (based on 13.33 ms slots) or 4500 time slots

per minute, with each time slot capable of txansmitting 192 bits of data.

As with VDL Modes 2 and 3, the physical layer is responsible for data transmit and receive

processing, frequency control and provides notification services. The physical layer determines

signal quality based on outputs from the demodulator, determines time of arrival of received

messages, and performs channel sensing to determine if the channel is idle or busy. This

information is provided to the upper layers.

4.3.2 Data Link Layer (MAC sublayer)

The MAC layer for VDL Mode 4 implements a TDMA _rame structure as per Figure D-20. The

top-level timing construct is the superframe, which span:_ a 1 minute time interval and consists of
4500 time slots that are available for all users in the sub-network for information exchange.

I mlnuto

(_Jwt m÷ I

Figure D-20 VDL Mode 4 Superframe [13l

As with all TDMA systems, time synchronization is critLcal in managing channel access among

all users in order to prevent self-interference. VDL Moire 4 plans to use an integrated timing

concept (ITC) to achieve system time based on UTC time. Five methods of achieving this

timing are being considered (order of preference from I to 5):

1) Primary timing for all users is to use GPS/GNSS tin_e, which provides time to within 400 ns (2(_).

2) Ground station network provides timing via broadc2st synchronization messages.

3) Use of atomic clocks by all users.

4) Synchronization from other users, providing timing to 1 _.s.

5) Floating network, where all users have lost GPS/GI_SS time and continue to synchronize off
each others transmission based on an "average drift rate" of received message timing.
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WhileGPS/GNSStimeis themostconvenientandaccuratetimingapproach,thereisconcern
thattheindependencebetweentheCNScommunicationsandthenavigationfunctionsis
compromisedby failureofGPS.

TheMAClayerdeterminesslotoccupancybasedontwofactors:1)thereservationtable
indicatesthattheslotis reserved,and2) thephysicallayerindicatesthatthechannelisbusy.

TheMAClayershalltransmitin thecurrentslotif 1)areservationhasbeenmadepreviouslyfor
theslot,and2) thereisnoreservation,buttheslotisunoccupied.In 2) theMAClayeruses
randomor CSMAaccesstogainchannelaccess.

TheMAC layerisalsoresponsibleforerrordetectionprocessingof theframecyclicredundancy
code(CRC).In theeventof anerror,thereceivedburstisdiscarded.If acorrectlyreceived
burstcontainsreservationinformation,theMAClayerforwardsthereservationinformationand
thereceivedtimeto theVHFSpecificServices(VSS)sub-layer.Receiveddataandsignal
qualityandtransmissionstarttimesof framesarealsopassedto theVSSandDataLink Services
(DLS)layers.

4.3.3 VHF Specific Service (VSS) Sublayer

Figure D-21 illustrates the sub-network "lower layers" used by VDL Mode 4. The physical and

MAC sublayers have already been described. This section discusses the VSS sublayer.

The VSS sublayer provides many functions:

1) Burst formatting, encoding, decoding and data error detection

2) Maintains the reservation table

3) Provides various access protocols (reserved, random and fixed access)

4) Manages the transmission queues

5) Determines slot selection in scheduling future transmissions

6) Provides notification of channel congestion.

VSS Burst Format and Access Protocols

Figure D-22 shows the structure of the VDL Mode 4 burst, which provides a flexible message

structure that allows a user to transmit messages while at the same time making future slot

reservations for upcoming data exchanges with other users. This is accomplished by allowing

each message to contain a number of key information elements: 1) reservation data, 2)

synchronization data including position, and 3) fixed and variable information fields.

The reservation field includes reservation ID and associated reservation data that support several

autonomous and controlled access protocols. The protocols supported are as follows:

a) null reservation

b) periodic broadcast

c) incremental broadcast

d) combined periodic and incremental broadcast

e) unicasted request

f) information transfer request

g) directed request

h) response.

D-31



VDL Mode 4

! ,:'_!_ii_!}_i,_ii_ _ _!_ :._iiii' _:i_:

|

Figure D-21 VDL Mode 4 Sub-Network Layers [13]

As indicated, the access protocols b) to d) above are broadcast protocols. The periodic broadcast

protocol is the most important autonomous scheme, whi.:h supports broadcast of position and

identity information by all users in the vicinity and allows the system to operate effectively

regardless of the presence of ground stations. The protocol is illustrated in Figure D-23. Each

periodic broadcast contains the station ID of the user, pc sition information, and reservation

information consisting of a periodic time out value, and a periodic offset. The time out value

indicates for how many superframes (1 minute frame) tl_e broadcast slot reservation remains in

effect (from the current frame) and the offset value from the current slot position in the frame to

which the reservation will move to once the time out co_mt expires.
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In order to make future slot selections, the user must listen to the network for one superframe (-
1 minute) in order to assess slot availability. Once a slot selection is made, the user maintains

the reservation for 3 to 8 minutes. The slot selection process for making these future
reservations is discussed below.
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Figure D-22 VDL Mode 4 Burst Structure [13]
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Figure D-23 Periodic Broadcast Protocol [13]

Incremental broadcast is used when an application must broadcast data over a short period of
time, typically within the same supcrframe. The user includes an incremental offset value in its

transmission to reserve a slot as indicated by the offset value from the current slot. Periodic and
incremental broadcast channel access can be combined.

The unicasted request protocol (see list above) is used by a station that requires a response from

another station. In sending the request, the user includes a slot reservation for the other station

for sending the reply transmission. This requires that the destination address is included along
with frequency of the channel and the response offset from the current slot.

The information transfer request protocol is used to obtain a data series from another user. Slots

are reserved for the transmission of the requested information from the other user, and also

reserved for an acknowledgment of the requesting user.

Directed requests are similar to the periodic broadcast protocol in obtaining regular broadcasts,

but the allocation of slots is enforced by a single user that is most likely a ground station. The
ground station sends slot offset and rate information to e_ch user to allocate slots for
transmission of broadcast information.

In addition to the above access protocols, VDL Mode 4 also supports random access and fixed
access protocols. Random access can be used when sufficient slots are available to transmit the

full message. A p-persistent CSMA protocol is used for _andom access. Fixed access can be

provided by permanently allocating certain slots for fixec purposes (primarily for use by ground
stations).
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ReservationTableMaintenanceandSlotSelectionProtocol

As each user receives bursts, slot reservation information is extracted and used to update the

Reservation Table. It is important that each user maintains a reservation table in order to

maintain the integrity of the slot selection process.

When preparing to make a reservation for an upcoming transmission, the user must determine

the amount of data to be transmitted (number of consecutive bursts) and then determines the

available number of slots in the reservation table. If a sufficient number of slots are available,

the user makes a selection and schedules the transmission accordingly. If there is not a sufficient

number of slots, the user can select from previously reserved slots by other users.

Two methods of borrowing slots are used: 1) slots that do not result in co-channel interference

(CCI), and 2) Robin Hood selection. CCI selection is illustrated in Figure D-24. Station I wants

to communicate with Station 2, but an insufficient number of slots are available for transmission.

In order to free up additional slots, Station 1 examines the reservation table to determine if it can

borrow slots from other reservations. It looks to find reservations between other user pairs

(Stations 3 and 4) that are more distant and would not be interfered with since the D/U of the

geometry is such that no CCI results.

Station 4

4. /a-
_ Station 3

_ Station 1

Figure D-24 Slot Selection based on Co-Channel Interference Protection [131

The second method using previously reserved slots is to borrow them from aircraft that are at

long distances. This is referred to as Robin Hood and is illustrated in Figure D-25. The effect of

Robin Hood is to gracefully degrade the communications range as the channel loading increases.
It is evident that a modulation waveform that is robust to co-channel interference, i.e., low D/U,

is critical for extending network capacity using CCI and Robin Hood.

Figure D-25 Slot Selection based on Robin Hood
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Useof CCIandRobinHoodisacceptablefordatalink applicationssuchasADS-B.However,
forCPDLCapplicationsit is importantthatthegroundcontrollermaintaincommunicationwith
all aircraftwithin theintendedcoveragevolumeandthatuseof CCIandRobinHoodwouldnot
beacceptable.Qualityof serviceparametersareusedto controltheextent(if any)towhichCCI
andRobinHoodareusedin theslotselectionprocess.

Observation:As thenetwork becomes more loaded, a substantial number of reservation table

calculations must be made in real time to determine future slot reservations, especially for CCI and

Robin Hood calculations. This is likely not a problem with the fast processors available today.

4.3.4 Data Link Layer (DLS sublayer) and Link Management

The data link services (DLS) sublayer used by VDL Mode 4 is similar to the one used by VDL

Modes 2 and 3. The same command and response AVLC protocol (Table D-4) is implemented.

The various access protocols described above and the slot reservation approach of the VSS

supports the DLS protocol.

The link management function of the data link layer of VDL Mode 4 uses the synchronization

bursts and the XID (exchange ID) frames to establish and maintain links between stations.

Synchronization bursts provide identity and position information of aircraft. XID frames provide
link control information.

Global Signalling Channels

VDL Mode 4 plans to utilize a world-wide pair of Global Signalling Channels (GSCs) that

provide for communication control in all airspaces. These global signalling channels are used to

transmit VDL Mode 4 Directory of Service (DOS), which provides frequency channel

information on the various services that are available in _:heairspace of interest, e.g., AOC,
GPS/GNSS data link, etc.. The two GSCs are also used for enroute ADS-B, where each aircraft

transmits synchronization bursts on an alternating 20 sec period on each channel for an effective

10 see update for ADS-B enroute surveillance.

4.3.5 Sub-Network Layer

The sub-network layer is the same for all VDL modes and is not discussed here.

4.3.6 VDL Mode 4 and ADS-B

The primary driver for VDL Mode 4 from a data link application perspective is ADS-B. Thus

this section examines VI)L Mode 4 use for ADS-B. As described in the previous sections, ADS-

B is inherently integrated into the VDL Mode 4 protoco'_s. GNSS time and position are key

elements in providing TDMA timing and channel / slot access. VDL Mode 4 supports periodic

broadcasts of aircraft state information (i.e., position, rate of change, aircraft identification,

trajectory change points, etc.) as part of its synchronization bursts.

Section 3.3 (Volume I report) presented ADS-B require_nents as developed in the ADS-B

MASPS. The ADS-B MASPS identifies the data link rc'quirements in terms of 1) information

content, 2) update rate, 3) coverage range, 4) and a number of required communication

performance factors such as latency, availability, integr ty, etc. needed to support ADS-B

applications. The typical ADS-B data report is -200 bis long. ADS-B report update rates for

enroute, terminal area, and surface operations are 12 seconds, 5 seconds, and 1 second,

respectively. Not all information fields must be updated at the maximum rate. Coverage range

requirements can be several miles up to 200 nmi depending on the end-user application.
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An assessmentof VDL Mode4 datalink loadingandresourcerequirementsto supportADS-Bin the
high-trafficLosAngeles(LA)Basinenvironmentis foundin [4]. TheLA Basinhasbeenidentified
asaworstcasetrafficdensity.TrafficdensitiesfortheLA Basinusedin [4]areasfollows:
1) 1000aircraftin enrouteairspace
2) 750aircraftin terminalareaairspace
3) 150aircraftonairportmovementareas(perairport)
4) 100aircraftonclosely-spacedparallelapproaches(singleairport)
5) 50airports,with10largeairportsarelocatedwithintheLA Basin.

Enroute Data Link Requirement

As indicated previously, VDL Mode 4 utilizes 4500 time slots per minute (i.e., 75 slots per see),

each slot transmitting 192 bits of information in a typical ADS-B synchronization burst.

Assuming that each synchronization burst / slot accommodates a single ADS-B report (to be

validated), a single narrowband VHF channel is capable of supporting up to 750 enroute aircraft

at a 10 second update rate. Thus two channels are required to meet the 1000 aircraft LA Basin

requirement for enroute ADS-B applications (with each aircraft transmitting on both channels at

a 20 sec rate per channel). The two VDL Mode 4 channels utilize - 66 % capacity for fixed
ADS-B synchronization bursts. An additional 25 % capacity is estimated for lower rate ADS-B

data (e.g., next trajectory change point, etc.). Also 10 % of capacity is anticipated for directory

of services (DOS) messages and autotuning messages. Thus both channels are fully loaded for
the worst case LA Basin enroute region.

VDL Mode 4 plans to use the two Global Signalling Channels (GSCs) to provide enroute ADS-

B, also providing DoS indicating other available services. GSCs typically utilize self-organizing

protocol, where all airspace users develop their own network timing via received synchronization
bursts, without need for ground control (i.e., directed services).

Terminal Area Data Link Requirements

With a 5 second update rate for ADS-B, - 375 (75*5) aircraft can be supported on a single

channel. Terminal area ADS-B is expected to be under ground control, i.e., a ground station

assigns time slots for user ADS-B transmissions. Autotuning commands require -3% loading.

Thus two ADS-B channels are needed for LA Basin terminal area ADS-B applications. The

same two frequencies are expected to be reused among all airports in the LA Basin due to the

relatively low D/U performance of 19.2 kbps GFSK (a low D/U waveform is absolutely essential

for VDL Mode 4 ADS-B data link). Aircraft are expected to be able to discriminate between the

desired (near) airport and undesired (more distant airports).

Surface Operations (ASMGCS) and Parallel Approaches (PRM) Data Link Requirements

[4] indicates one channel required for each application; Airport Surface Movement Guidance and

Control System (ASMGCS) and Precision Runway Monitoring (PRM). With - 1 second update
rates for moving aircraft / vehicles, some adaptive update rates for stationary or slow moving

aircraft / vehicles may be needed to achieve all ADS-B data link within a single channel for each,
ASMGCS and PRM.

Summarizing VDL Mode 4 channel requirements from [4]:

1) 2 Global Signalling Channels (GSCs) for enroute ADS-B

2) 2 fi:equency channels for terminal area ADS-B

3) 1 frequency channel for the ASMGCS ADS-B application

4) 1 frequency channel for the PRM ADS-B application
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Note: For VDL Mode 4 data link applications other than ADS-B, [4] estimates that four

frequencies are required for DGPS/DGNSS data link, and one frequency is required for

each, FIS-B and TIS-B. Thus a total of 10 frequencies are estimated to provide the above

services in the LA Basin (not including the two GSCs).

Due to the GSCs, the basic VDL Mode 4 radio configuration consists of two dedicated receivers

and one transmitter that tunes between the two GSC frequencies. Additional receivers and

perhaps additional transmitters are needed if additional services are included. The number of

dedicated transmitter and receiver modules required for x,rDL Mode 4 are highly dependent on

how many of the CNS/ATM data link applications are integrated within a particular radio

frequency.

The assumption in this paper is that data link application_ (e.g., CPDLC, AOC/AAC, FIS, ADS-B,

etc.) will primarily be maintained as separate services (by frequency) due to capacity constraints,

"separation of function" considerations, and institutional separation of services. Sections 3.4 and

3.5 (in Volume I report) examine CNS/ATM data link al:,plication allocation to various data links,

including VDL Mode 4, and develop data link architecture resource requirements.

In Sections 3.4 and 3.5 (Volume I), a dedicated ADS-B resource requirement of 2 transmitters

and 4 receivers is assumed, representing the worst case requirement when an aircraft transitions

between enroute and terminal area regions under ADS-B surveillance, in an LA Basin type of

environment. Both enroute and terminal area ADS-B must be maintained simultaneously in the

transition region. Two transmitters are assumed in ordel to allow independence between enroute

and terminal area ADS-B networks. It may be possible to use a single transmitter that can be

retuned to transmit on one of four frequencies as long as the occurrence of simultaneous transmit

requests to accommodate both ADS-B networks is low.

The above ADS-B loading estimates represent a worst c_tse traffic environment. Conversely, the

above estimates also assume 1) near perfect TDMA slot selection in a heavily loaded network

(self-organized and ground directed), 2) perfect message reception, i.e., no need for

retransmissions or higher update rates due to possible cerrupted messages, and 3) that a single

VDL Mode 4 slot is sufficient for sending an entire ADE:-B report. For high-density areas it is

possible that additional channels may be required to off, et any additional overhead due to

imperfect channel access (e.g., less than -90 %), messa_:e errors, and extra transmissions due to

longer message requirements. Further validation of the,, e effects is required.

Additional Considerations of VDL Mode 4 ADS-B

The following are additional factors that impact VDL Mode 4 ADS-B:

1) D/U ratio

2) Range guard time

3) Hidden user, net entry and reservation updates

4) Interoperability with TCAS

5) Frequency band.

D/U Ratio

A low D/U ratio is essential for VDL Mode 4 ADS-B olherwise the concept will not work. A

high D/U results in distant aircraft being able to interfere with the reception of ADS-B reports of

aircraft that are relatively close. In tracking an aircraft _thin 25 nmi, a D/U of 18 dB allows an

aircraft as far away as 200 nmi to interfere with signal reception. Similarly, tracking a 50 nmi

aircraft can be interfered with by an aircraft 400 nmi a_ay.
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Twoaircraftlocatedeithersideof thereceivingaircraftmaynotbewithinradioline-of-sight
(RLOS)andarethushidden(hiddenuser)andmayinadvertentlyselectthesameperiodictime
slotsassignmentsfor signaltransmission.Timeslotassignmentsareselectedbasedonaone
minute(onesuperframe)listeningintervalandaremaintainedfor 4to 8minutesbeforetheyare
changed.Thusanaircraftwithin25to 50nmimaybehiddenfor4 to8minutes,whichdueto
highclosureratesisunacceptablefor safeoperations.A lowD/Uallowstheaircraftto
discriminatebetweenthesetwoaircraft,andahiddenuserin thiscaseisnotaproblem.In
additionbyusingtwoGSCs,it isunlikelythatbothhiddenuserswill makethesametimeslot
selectionsonbothchannels.

Fora lowD/Uof 6dB,anaircraftbeingtrackedat50nmicanbeinterferedwithbyother
aircraftwithin100nmiof thereceivingaircraft.Thetwotransmittingaircraftwill bewithin
RLOSandwill makeappropriateslotreservationstoavoidselectingthesametimeslots.In high
trafficdensities,whereRobinHoodisusedto overridetimeslotassignmentsof distantusers,a
lowD/Uisalsobeneficial.

Anadditionalmarginin therequiredD/Umayberequiredto accountfor channeleffectsand
gainimbalancesin transmittersandantennagains.Theextentofthismarginiscriticalin
determiningADS-Bperformanceandmustbeinvestigated.

RangeGuardTime

In ordertomaximizedatalinkthroughput,arangeguardtimeof-1.25msis availablein the
VDLMode4timeslot,supporting-200nmirange.Forgroundstationsperforminglong-range
ADS-Bsurveillance,theguardtimemaybecomeanissue,althoughalowD/Uwill discriminate
tothecloseraircraft.WhetherthisguardtimeselectionisadequateisTBD.

Hidden User, Net Entry, Reservation Updates

The hidden user was described above and becomes a problem when two aircraft are beyond

R.LOS of each other and inadvertently select the same time slots for transmitting ADS-B reports.

In addition, hidden users can occur when signals are blocked by terrain (e.g., mountains) or

buildings, etc., on the airport surface. In selecting slots, aircraft / ground vehicles maintain

reservation tables of the entire network (reservation information is included in transmitted

messages). These selections are typically made while monitoring the channel for 1 superframe

(1 minute). Reservations are maintained for 4 to 8 minutes, before a new series of periodic time

slots are selected. Thus it is possible that hidden users could stay hidden up to 8 minutes. Using

two independent channels reduces the possibility of message conflicts once users are visible,

even if the 8 minutes have not expired. Use of more frequent reservation updates (less than 4

minutes) in order to minimize the duration of possible message collisions due to hidden users

may be difficult in high traffic densities due to the excessive reservation changes by all users.

lnteroperability with TCAS

Section 3.3.2 (Volume I) discusses issues related to ADS-B surveillance and ACAS/TCAS.

Since ADS-B is also expected to support the ACAS application, interoperability with the current

TCAS is a requirement. Since TCAS currently uses the Mode-S link for surveillance and an air-

to-air resolution advisory link between aircraft, new interfaces to TCAS would likely be required

with VDL Mode 4 as the provider of ADS-B reports. Additional issues of independence of

ASAS and ACAS, and transition to a new ACAS based on VDL Mode 4 are also discussed in

Section 3.3.2 (Volume I).
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Independence of Surveillance and Navigation Functions

The independence of surveillance and navigation for VDL Mode 4 is a potential concern. VDL

Mode 4 is dependent upon GPS/GNSS time and position information to maintain the data link,

while surveillance makes use of the same position information.

Frequency Band Issues

Currently, the VHF Comm band is designated for Aeronautical Mobile Route Services (AMRS) and

may not allow transmission of ADS-B surveillance information. In addition, the VHF frequency

band is already heavily congested and may not support additional requirements for ADS-B.

4.3.7 Mode-S and ADS-B

Mode-S is also a candidate for ADS-B data link and builds upon the existing Mode-S based

surveillance system (Secondary Surveillance Radar and TCAS). Mode-S utilizes a single, wide-

band high data rate channel, providing all airspace users with a seamless, global frequency

resource for transmitting ADS-B reports. Important issues with Mode-S for ADS-B are capacity,

range, and near omnidirectional coverage of a-ansmitting signals, i.e., absence of significant nulls.

Mode-S data link capacity and interference studies indicate that Mode-S is capable of meeting

ADS-B requirements for high-density traffic environments (-700 aircraft in LA Basin). In

addition, while previously the need for longer range surveillance was not a requirement for

airborne TCAS / Mode-S, additional range capabilities i_eeded for ADS-B are possible with these

systems and must be validated. Enhanced signal proces,mg of received ADS-B reports will be

needed to improve reception probability in high-density traffic areas. Omnidirectional antenna

patterns must be investigated. Upper and lower diversi_! receivers may be required for most

aircraft (current air transport aircraft already utilize diversity Mode-S systems). Table D-9

summarizes many of the key issues of ADS-B with respect to Mode-S and VDL Mode 4.

4.3.8 Summary of VDL Mode 4

VDL Mode 4 is a data only (i.e., no digital voice) data link that utilizes TDMA channel access

protocols for efficient channel utilization. The signalling rate is 19.2 kbps GFSK. TDMA time

slots are - 13.33 ms long with ~ 10 ms of the slot availa_)le for data transfer, which results in 192

bits per slot.

VDL Mode 4 makes integral use of GPS/GNSS time and position information for TDMA timing

and slot selection protocols. All airspace users exchange synchronization bursts (which include

position information) to develop system timing, allowing autonomous, self-organizing network

access. Channel access can also be controlled directly ky ground stations. In addition, VDL Mode

4 includes address and slot reservation information with in messages to allow all users to build and
maintain a network slot reservation table. This slot reservation table serves as the mechanism for

all users to reserve dedicated time slots for desired sigmd lxansmissions, thus minimizing slot

contention. As the network becomes more fully loade& it may become difficult to find available

slots. VDL Mode 4 utilizes position information on all users to override slot selection of distant

users or those that will not be affected by co-channel inlerference due to geometry.

A VDL Mode 4 user listens to network transmissions fcr one superframe (1 minute) before

selecting available time slots. Time slot selections are raaintained for 4 to 8 minutes before a new

reservation using different slots is made.

While VDL Mode 4 was originally intended for broadcast services, e.g., ADS-B, it also has

provisions for a range of addressed communications and slot reservation protocols and is thus
capable of providing a number of data link services. Sc me envision VDL Mode 4 to be a common
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ADS-BRequirement / Issue Mode-S VDL Mode 4

Interference immunity Demonstrated in relatively TBD based on D/U and

high density traffic interference from other VHF

environment for ASGMCS Comm applications

Availability, integrity achievable achievable

Autonomous yes yes in low density traffic,

TBD in high density traffic

Range 100 nmi plus (to be verified) yes (200 nmi)

Traffic density single wideband channel [2,3] several narrowband channels,

potentially requires numerous

channels (to be verified); [4]

Independence of function yes potential problem

(Comm, Nav, Surveillance)

Independent validation of yes no

position

Spectrum and spectrum

availability

Update rate

Mode-S band already assigned
for surveillance

high, allowing retransmission

of ADS-B reports for

increased availability,
also needed for TCAS/ACAS

surveillance via VHF may not

be possible due to frequency

assignment policy;

availability of additional VI-IF

frequency resources in
crowded band is TBD

low, but may not be as

important in terms of message

retry requirement (TBD) due

to TDMA protocol

likely cannot provide

sufficient capacity to support

ACAS update rates of- 1

second (if required). Requires
numerous channel resources

in high traffic densities.

Compatibility with TCAS and fully compatible with current not compatible, likely a

SSR surveillance, legacy issue system difficult transition period

Full message content of ADS- yes not sure

B report (baro altitude, a/c call sign)?

Hidden user problem no (not for long time periods) TBD

Omnidirectional transmit TBD VHF signal more amenable,
cover volume TBD

Error correction coding yes, sufficiency to be verified none at physical layer,

potential issue

Table D-9 Data Link Issues for ADS-B (Mode-S and VDL Mode 4)
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CNS/ATMdatalink forCPDLC,AOC/AAC,FIS,FIS-B,TIS-B and ADS-B data link

applications. VDL Mode 4 is capable of both ATN-compatible and VHF Specific Services

(VSS) data link. VSS supports low-latency tactical communications.

While VDL Mode 4 has many attractive features and capabilities, there are also a number of

potential shortcomings. VDL Mode 4, like VDL Mode 3 is considerably more complex than

VDL Mode 2. This is primarily due to the TDMA protoc.3l. In addition VDL Mode 4 is highly

dependent on precise timing from GPS/GNSS and uses minimal guard times to attain maximum

channel data rate. The VDL Mode 4 network, while extremely flexible, does not appear as

robust even as VDL Mode 3, which uses centralized timing control from ground stations.

"Separation of function" of communications, navigation and surveillance is an important

consideration for VDL Mode 4 ,which has a tendency to promote integration of these functions.

CNS separation of function, i.e., independence among these functions to avoid common failures,

is an important concept in conducting airspace operations.

VDL Mode 4 is highly reliant on low D/U performance o-'the 19.2 kbps GFSK waveform in
order to avoid co-channel interference effects. The robustness of the waveform reduces the

available signalling rate to 19.2 kbps. The lower signalling rate along with the associated time

slot structure may be inadequate for some high data rate applications such as ADS-B, requiring

additional channel resources. It is possible that a bank of VHF channel resources requiring

multiple VHF receiver and transmitter modules may be required to satisfy the future CNS/ATM

data link requirements. Since the VHF spectrum is already at a premium, allocation of additional

services to the V/IF band (e.g., ADS-B surveillance) ma3 not be possible.

Since VDL Mode 4 is envisioned by some for providing he ADS-B data link, significant issues

arise in terms of the current legacy TCAS / Mode S surveillance system. Since ADS-B is

expected to support separation assurance and collision a,, oidance applications, additional

interfaces to TCAS are required. Dual equipage is likely needed during any transition phase

before a VHF-based ADS-B and ACAS system can evolve. Since Mode-S is envisioned by

some to be the ADS-B data link, with little additional modifications to the current system, a

VDL Mode 4 solution may not be cost effective.

For VHF Comm applications, VDL Mode 4 does not provide digital voice capability and thus

additional, dedicated radio resources are required to pro', ide both voice and data link services.

The competing VDL Mode 3 offers integrated voice and data services simultaneously over the

same frequency channel and does not require additional radio resources. In addition, the 31.5

kbps signalling rate supports four voice channels on a single VHF 25 KHz channel and thus

provides efficient frequency use in the crowded VI-IF spectrum. Use of 8.33 KHz analog voice

channels in concert with VDL Mode 4 data link may als(, provides more efficient channel

utilization, but requires separate radios.

While VDL Mode 4 provides the potential for a unified data link solution for all CNS/ATM data

link applications, there are also numerous potentially ser _ous issues of its use as the end-state

CNS/ATM data link for all or even some of these applications. In order to totally resolve these

issues will require significant validation activity. At the same time, the industry has been forging
ahead with definition and development of Mode-S ADS-B and VDL Mode 2 and 3 for ATC/ATS

data link, with substantial investments in time (i.e., man'., man years of effort have been spent).

VDL Mode 4 is a relative newcomer to the various ICA() and RTCA industry committees that are

developing data link applications and may have a diffic_ It time gaining acceptance since other

solutions are already well along in the development and validation phase. Table D-10 summarizes

the performance of VDL Mode 4.
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Communications Performance

Throughput delay capable of very low latencies due to VHF

Specific Services

Message integrity, priority yes

ATN Compatibility yes

VHF Specific Services (VSS), i.e., non-ATN yes

Broadcast Capability yes

Voice/Data data only

19.2 kbps GFSK D/U of- 6dB for frequency reuse

Table D-10 VDL Mode 4 Communications Performance Summary
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4.4 Comparison of VDL Modes 2, 3 and 4

Table D- 11 provides a summary comparison of characteristics and capabilities of the various
VDL modes.

VDL Mode 2 VDL Mode 3 VDL Mode 4

air-ground comms air-ground comms air-ground, air-air comms

ATN-compatible ATN-compatible ATN-compatible

(addressed comms) (addressed comms) (addressed comms)

currently no VHF specific currently no VHF specific VSS capability for local,

services (VSS), i.e., non-ATN, services (VSS), i.e., nor-ATN, tactical communications

capability capability

not well suited for broadcast broadcast capableideally suited for simplex

broadcast (some minor
modifications to current

protocols required)

CSMA (efficient channel TDMA (high efficiency TDMA (high efficiency
access for low channel traffic) channel access possible J channel access possible)

simple protocols, timing complex, protocols, tim ing complex protocols, timing

high latency low to moderate latency low latency

data only simultaneous voice and data data only

31.5 kbps D8PSK 31.5 kbps D8PSK 19.2 kbps D8PSK

high D/U (16 to 20 dB) high D/U (16 to 20 dB) low D/U (-6 dB)
to be verified

linear power amplifier linear power amplifier nonlinear amplifier

required required

not a candidate for ADS-B not a candidate for AD';-B ADS-B candidate, capability

requires validation

(see Table D-9).

N/A adequate range guard times range guard times marginal

frequency reuse is TBD frequency reuse is TBE frequency reuse is TBD

(function of coverage volume (function of coverage w_lume (function of coverage volume

and DFU margin) and D/U margin) and D/U margin)

can meet integrity, availability can meet integrity, availability can meet integrity, availability

Table D-11 Summary of VDL Characteristics
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